Concept explainers
(a)
The de Broglie wavelength of the earth.
(a)
Answer to Problem 47E
The de Broglie wavelength of the earth is
Explanation of Solution
Given Info: The mass of earth is
Write the formula to calculate the de Broglie wavelength of the earth.
Here,
m is the mass of the earth
v is the orbital velocity
Substitute
Conclusion:
Therefore, the de Broglie wavelength of the earth is
(b)
The quantum number of the earth’s orbit.
(b)
Answer to Problem 47E
The quantum number of the earth’s orbit is
Explanation of Solution
Given Info: The circumference of the earth is
Write the expression for the relation between the circumference and wavelength.
Here,
n is the quantum number of earth’s orbit
C is the circumference of the earth’s orbit
Substitute
Conclusion:
Therefore, the quantum number of the earth’s orbit is
(c)
Does the quantum consideration has any major role on the earth’s orbital motion.
(c)
Answer to Problem 47E
The mass of the earth is too big and hence the de Broglie wavelength is too small to detect therefore
Explanation of Solution
Write the formula to calculate the de Broglie wavelength of the earth.
Since the de Broglie wavelength of any object is inversely proportional to the mass of the object. As mass increases the observed de Broglie wavelength is too small to detect. Here the mass of the earth is too big and hence too small the de Broglie wavelength.
In addition to that the value of plank’s constant h has the order of
Conclusion:
Therefore, the mass of the earth is too big and hence the de Broglie wavelength is too small to detect therefore quantum mechanics has no role in the case of earth’s orbit motion.
Want to see more full solutions like this?
Chapter 9 Solutions
The Physical Universe
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- How can i solve this if n1 (refractive index of gas) and n2 (refractive index of plastic) is not known. And the brewsters angle isn't knownarrow_forward2. Consider the situation described in problem 1 where light emerges horizontally from ground level. Take k = 0.0020 m' and no = 1.0001 and find at which horizontal distance, x, the ray reaches a height of y = 1.5 m.arrow_forward2-3. Consider the situation of the reflection of a pulse at the interface of two string described in the previous problem. In addition to the net disturbances being equal at the junction, the slope of the net disturbances must also be equal at the junction at all times. Given that p1 = 4.0 g/m, H2 = 9.0 g/m and Aj = 0.50 cm find 2. A, (Answer: -0.10 cm) and 3. Ay. (Answer: 0.40 cm)please I need to show all work step by step problems 2 and 3arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning