Electric Circuits (10th Edition)
10th Edition
ISBN: 9780133760033
Author: James W. Nilsson, Susan Riedel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 40P
a.
To determine
Find the value of inductance.
b.
To determine
Derive the steady-state expression for
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
No chatgpt pls will upvote Already got wrong chatgpt answer
"I need an expert solution with detailed steps for
integration."
The normalized Far-field pattern of an antenna is given by:
E = √√sine (cosq)
Determine:
1) Beam solid angle
2) Exact Directivity
0≤0≤ 180, while 0≤≤180, and 270 ≤≤ 360
3) HPBW in both azimuth and elevation
"I need an expert solution with detailed steps for
integration."
Find Directivity, the effect aperture and aperture efficiency of the antenna, if it has physical
aperture of 2.4 x 10-2-2 and the radiation intensity can be approximated by:
U(0, 4) = (sesce
0°s0<20°
20°ses600
1.0°≤≤ 360°
Chapter 9 Solutions
Electric Circuits (10th Edition)
Ch. 9.3 - Prob. 1APCh. 9.3 - Prob. 2APCh. 9.4 - Prob. 3APCh. 9.4 - Prob. 4APCh. 9.5 - Four branches terminate at a common node. The...Ch. 9.6 - A 20 resistor is connected in parallel with a 5...Ch. 9.6 - The interconnection described in Assessment...Ch. 9.6 - Prob. 9APCh. 9.7 - Find the steady-state expression for vo (t) in the...Ch. 9.7 - Find the Thévenin equivalent with respect to...
Ch. 9.8 - Use the node-voltage method to find the...Ch. 9.9 - Use the mesh-current method to find the phasor...Ch. 9.10 - Prob. 14APCh. 9.11 - The source voltage in the phasor domain circuit in...Ch. 9 - Prob. 1PCh. 9 - Prob. 2PCh. 9 - Consider the sinusoidal voltage
What is the...Ch. 9 - Prob. 4PCh. 9 - Prob. 5PCh. 9 - The rms value of the sinusoidal voltage supplied...Ch. 9 - Find the rms value of the half-wave rectified...Ch. 9 - Prob. 8PCh. 9 - Prob. 9PCh. 9 - Verify that Eq. 9.7 is the solution of Eq. 9.6....Ch. 9 - Use the concept of the phasor to combine the...Ch. 9 - Prob. 12PCh. 9 - A 50 kHz sinusoidal voltage has zero phase angle...Ch. 9 - The expressions for the steady-state voltage and...Ch. 9 - A 25 Ω resistor, a 50 mH inductor, and a 32 μF...Ch. 9 - A 25 Ω resistor and a 10mH inductor are connected...Ch. 9 - Three branches having impedances of , and ,...Ch. 9 - Prob. 18PCh. 9 - Prob. 19PCh. 9 - Show that at a given frequency ω, the circuits in...Ch. 9 - Show that at a given frequency ω, the circuits in...Ch. 9 - Find the impedance Zab in the circuit seen in Fig....Ch. 9 - Find the admittance Yab in the circuit seen in...Ch. 9 - For the circuit shown in Fig. P9.24, find the...Ch. 9 - Prob. 25PCh. 9 - Prob. 26PCh. 9 - Prob. 27PCh. 9 - Find the steady-state expression for io(t) in the...Ch. 9 - Prob. 29PCh. 9 - The circuit in Fig. P9.30 is operating in the...Ch. 9 - Prob. 31PCh. 9 - Find Ib and Z in the circuit shown in Fig. P9.35...Ch. 9 - Find the value of Z in the circuit seen in Fig....Ch. 9 - Prob. 34PCh. 9 - The circuit shown in Fig. P9.35 is operating in...Ch. 9 - The frequency of the sinusoidal voltage source in...Ch. 9 - The frequency of the source voltage in the circuit...Ch. 9 - The frequency of the sinusoidal voltage source in...Ch. 9 - Prob. 40PCh. 9 - The circuit shown in Fig. P9.40 is operating in...Ch. 9 - Find Zab for the circuit shown in Fig P9.42.
Ch. 9 - The sinusoidal voltage source in the circuit in...Ch. 9 - Prob. 44PCh. 9 - Use source transformations to find the Thévenin...Ch. 9 - Find the Norton equivalent circuit with respect to...Ch. 9 - The device in Fig. P9.47 is represented in the...Ch. 9 - Find the Thévenin equivalent circuit with respect...Ch. 9 - Find the Norton equivalent circuit with respect to...Ch. 9 - The circuit shown in Fig. P9.53 is operating at a...Ch. 9 - Find Zab in the circuit shown in Fig. P9.52 when...Ch. 9 - Prob. 53PCh. 9 - Use the node-voltage method to find V0 in the...Ch. 9 - Use the node-voltage method to find the phasor...Ch. 9 - PSPICEMULTISIM Use the node-voltage method to find...Ch. 9 - PSPICEMULTISIM Use the node-voltage method to find...Ch. 9 - Use the node-voltage method to find the phasor...Ch. 9 - Prob. 59PCh. 9 - Prob. 60PCh. 9 - Use the mesh-current method to find the...Ch. 9 - Prob. 62PCh. 9 - Prob. 63PCh. 9 - Use the mesh-current method to find the...Ch. 9 - Prob. 65PCh. 9 - Use the concept of current division to find the...Ch. 9 - For the circuit in Fig. P9.67, suppose
What...Ch. 9 - For the circuit in Fig. P9.68, suppose
What...Ch. 9 - Prob. 69PCh. 9 - The 0.5 μF capacitor in the circuit seen in Fig....Ch. 9 - The op amp in the circuit in Fig. P9.69 is...Ch. 9 - Prob. 72PCh. 9 - Prob. 73PCh. 9 - Prob. 74PCh. 9 - Prob. 75PCh. 9 - Prob. 76PCh. 9 - The sinusoidal voltage source in the circuit seen...Ch. 9 - A series combination of a 60 Ω resistor and a 50...Ch. 9 - Prob. 79PCh. 9 - Prob. 80PCh. 9 - Prob. 81PCh. 9 - Prob. 82PCh. 9 - Prob. 84PCh. 9 - Prob. 85PCh. 9 - Prob. 87PCh. 9 - Prob. 88PCh. 9 - Prob. 89PCh. 9 - Prob. 90P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Don't use ai to answer I will report you answerarrow_forwardDon't use ai to answer I will report you answerarrow_forward"Can you explain the integration method to show the result?" The radiation intensity of an aperture antenna, mounted on an infinite ground plane with perpendicular to the aperture, is rotationally symmetric (not a function of 4), and it is given by U = π sin Find the approximate directivity (dimensionless and in dB) using (a) numerical integration. Use the DIRECTIVITY computer program at the end of this chapter. U sin ( sin ) sin (a) Directly Do = 14.0707 = 10log (14.0707) = 11.48 dBarrow_forward
- Don't use ai to answer I will report you answerarrow_forwardcomplete the table in the attached photos. instructions are below the tablearrow_forwardPlease show the solution and answers in each. Thank you. A 120 MVA, 19.5 kV generator has Xₛ = 1.5 pu and is connected to a transmission line by a transformer rated 150 MVA , 230 wye/18 delta kV Watts, and X = 0.1 pu. If the base to be used in the calculation is 100 MVA, 230 kV for the transmission line. a. Find the per-unit values to be used for the transformer and generator reactances. b. If the transformer delivers 80% of its rated capacity to the line at 220 kV, express the current in per unit. c. Find also the current in the genrator in amperes.arrow_forward
- I need an expert mathematical solution. The radiation intensity of an aperture antenna, mounted on an infinite ground plane with perpendicular to the aperture. is rotationally symmetric (not a function of 4), and it is given by U sin (77 sin 0) π sin Find the approximate directivity (dimensionless and in dB) using numerical integration. Use the DIRECTIVITY computer program at the end of this chapter.arrow_forwardDon't use ai to answer I will report you answer.arrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Need handwritten solution not using chatgptarrow_forwardHandwritten Solution pleasearrow_forwardThe E-field pattern of an antenna. independent of , varies as follows: E 0 0° ≤ 0≤ 45° 45°<≤ 90° 90° <8180° (a) What is the directivity of this antenna? Umax 7 why did we use this law Umax = 12 but we divided by 2? In the sent Solution = R 27arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Types of Energy for Kids - Renewable and Non-Renewable Energies; Author: Smile and Learn - English;https://www.youtube.com/watch?v=w16-Uems2Qo;License: Standard Youtube License