Calculus: Early Transcendentals
8th Edition
ISBN: 9781285741550
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 9, Problem 3P
Let f be a function with the property that f(0) = 1, f'(0) = 1, and f(a + b) = f(a) f(b) for all real numbers a and b. Show that f'(x) = f(x) for all x and deduce that f(x) = ex.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
4. Consider the initial value problem
y' = 3x(y-1) 1/3,
y(xo) = yo.
(a) For what points (co, yo) does the IVP have a solution?
(b) For what points (xo, yo) does the IVP have a unique solution on some open interval that contains 20?
(c) Solve the IVP
y' = 3x(y-1) 1/3,
y(0) = 9
and determine the largest open interval on which this solution is unique.
Find the limit. (If the limit is infinite, enter 'oo' or '-o', as appropriate. If the limit does not otherwise exist, enter DNE.)
lim
X→ ∞
(✓
81x2
-
81x + x
9x)
2) Compute the following anti-derivative.
√1x4 dx
Chapter 9 Solutions
Calculus: Early Transcendentals
Ch. 9.1 - Show that y=23ex+e2x is a solution of the...Ch. 9.1 - Verify that y = t cos t t is a solution of the...Ch. 9.1 - (a) For what values of r does the function y = erx...Ch. 9.1 - (a) For what values of k does the function y = cos...Ch. 9.1 - Which of the following functions are solutions of...Ch. 9.1 - (a) Show that every member of the family of...Ch. 9.1 - (a) What can you say about a solution of the...Ch. 9.1 - (a) What can you say about the graph of a solution...Ch. 9.1 - A population is modeled by the differential...Ch. 9.1 - The Fitzhugh-Nagumo model for the electrical...
Ch. 9.1 - Explain why the functions with the given graphs...Ch. 9.1 - The function with the given graph is a solution of...Ch. 9.1 - Match the differential equations with the solution...Ch. 9.1 - Suppose you have just poured a cup of freshly...Ch. 9.1 - Psychologists interested in learning theory study...Ch. 9.1 - Von Bertalanffys equation states that the rate of...Ch. 9.1 - Differential equations have been used extensively...Ch. 9.2 - A direction field for the differential equation y'...Ch. 9.2 - A direction field for the differential equation...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Match the differential equation with its direction...Ch. 9.2 - Prob. 7ECh. 9.2 - Use the direction field labeled III (above) to...Ch. 9.2 - Sketch a direction field for the differential...Ch. 9.2 - Sketch a direction field for the differential...Ch. 9.2 - Prob. 11ECh. 9.2 - Prob. 12ECh. 9.2 - Prob. 13ECh. 9.2 - Prob. 14ECh. 9.2 - (a) Use Eulers method with each of the following...Ch. 9.2 - A direction field for a differential equation is...Ch. 9.2 - Use Eulers method with step size 0.5 to compute...Ch. 9.2 - Prob. 22ECh. 9.2 - Prob. 23ECh. 9.2 - (a) Use Eulers method with step size 0.2 to...Ch. 9.2 - The figure shows a circuit containing an...Ch. 9.3 - Solve the differential equation. 1. dydx=3x2y2Ch. 9.3 - Solve the differential equation. 2. dydx=xyCh. 9.3 - Solve the differential equation. 3. xyy=x2+1Ch. 9.3 - Solve the differential equation. 4. y+xey=0Ch. 9.3 - Solve the differential equation. 5. (ey1)y=2+cosxCh. 9.3 - Solve the differential equation. 6....Ch. 9.3 - Solve the differential equation. 7. ddt=tsecet2Ch. 9.3 - Solve the differential equation. 8....Ch. 9.3 - Solve the differential equation. 9. dpdt=t2pp+t21Ch. 9.3 - Solve the differential equation. 10. dzdt+et+z=0Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find the solution of the differential equation...Ch. 9.3 - Find an equation of the curve that passes through...Ch. 9.3 - Find the function f such that f(x) = xf(x) x and...Ch. 9.3 - Solve the differential equation y = x + y by...Ch. 9.3 - Solve the differential equation xy = y + xey/x by...Ch. 9.3 - (a) Solve the differential equation y=2x1y2. (b)...Ch. 9.3 - Solve the equation eyy + cos x = 0 and graph...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - Find the orthogonal trajectories of the family of...Ch. 9.3 - An integral equation is an equation that contains...Ch. 9.3 - An integral equation is an equation that contains...Ch. 9.3 - An integral equation is an equation that contains...Ch. 9.3 - Find a function f such that f(3) = 2 and (t2 +...Ch. 9.3 - Solve the initial-value problem in Exercise 9.2.27...Ch. 9.3 - In Exercise 9.2.28 we discussed a differential...Ch. 9.3 - In Exercise 9.1.15 we formulated a model for...Ch. 9.3 - In an elementary chemical reaction, single...Ch. 9.3 - In contrast to the situation of Exercise 40,...Ch. 9.3 - A sphere with radius 1 m has temperature 15C. It...Ch. 9.3 - A glucose solution is administered intravenously...Ch. 9.3 - A certain small country has 10 billion in paper...Ch. 9.3 - A tank contains 1000 L of brine with 15 kg of...Ch. 9.3 - The air in a room with volume 180 m3 contains...Ch. 9.3 - A vat with 500 gallons of beer contains 4% alcohol...Ch. 9.3 - A tank contains 1000 L of pure water. Brine that...Ch. 9.3 - When a raindrop falls, it increases in size and so...Ch. 9.3 - An object of mass m is moving horizontally through...Ch. 9.3 - Allometric growth in biology refers to...Ch. 9.3 - A model for tumor growth is given by the Gompertz...Ch. 9.3 - According to Newtons Law of Universal Gravitation,...Ch. 9.4 - A population grows according to the given logistic...Ch. 9.4 - A population grows according to the given logistic...Ch. 9.4 - The Pacific halibut fishery has been modeled by...Ch. 9.4 - Suppose a population P(t) satisfies...Ch. 9.4 - Suppose a population grows according to a logistic...Ch. 9.4 - Prob. 8ECh. 9.4 - The population of the world was about 6.1 billion...Ch. 9.4 - Prob. 10ECh. 9.4 - Prob. 11ECh. 9.4 - Biologists stocked a lake with 400 fish and...Ch. 9.4 - (a) Show that if P satisfies the logistic equation...Ch. 9.4 - For a fixed value of M (say M = 10), the family of...Ch. 9.4 - Prob. 16ECh. 9.4 - Consider a population P = P(t) with constant...Ch. 9.4 - Let c be a positive number. A differential...Ch. 9.4 - Prob. 21ECh. 9.4 - Another model for a growth function for a limited...Ch. 9.4 - In a seasonal-growth model, a periodic function of...Ch. 9.4 - Prob. 24ECh. 9.4 - Prob. 25ECh. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Determine whether the differential equation is...Ch. 9.5 - Solve the differential equation. 5. y' + y = 1Ch. 9.5 - Solve the differential equation. 6. y' y = exCh. 9.5 - Solve the differential equation. 7. y' = x yCh. 9.5 - Solve the differential equation. 8. 4x3y + x4y' =...Ch. 9.5 - Solve the differential equation. 9. xy+y=xCh. 9.5 - Solve the differential equation. 10. 2xy+y=2xCh. 9.5 - Solve the differential equation. 11. xy2y=x2,x0Ch. 9.5 - Solve the differential equation. 12. y+2xy=1Ch. 9.5 - Solve the differential equation. 13....Ch. 9.5 - Solve the differential equation. 14....Ch. 9.5 - Solve the initial-value problem. 15....Ch. 9.5 - Solve the initial-value problem. 16....Ch. 9.5 - Solve the initial-value problem. 17....Ch. 9.5 - Solve the initial-value problem. 18....Ch. 9.5 - Solve the initial-value problem. 19....Ch. 9.5 - Solve the initial-value problem. 20....Ch. 9.5 - Solve the differential equation and use a...Ch. 9.5 - Prob. 22ECh. 9.5 - A Bernoulli differential equation (named after...Ch. 9.5 - Use the method of Exercise 23 to solve the...Ch. 9.5 - Use the method of Exercise 23 to solve the...Ch. 9.5 - Solve the second-order equation xy" + 2y' = 12x2...Ch. 9.5 - Prob. 27ECh. 9.5 - Prob. 28ECh. 9.5 - The figure shows a circuit containing an...Ch. 9.5 - Prob. 30ECh. 9.5 - Let P(t) be the performance level of someone...Ch. 9.5 - Prob. 32ECh. 9.5 - In Section 9.3 we looked at mixing problems in...Ch. 9.5 - A tank with a capacity of 400 L is full of a...Ch. 9.5 - An object with mass m is dropped from rest and we...Ch. 9.5 - Prob. 36ECh. 9.5 - Show that the substitution z = 1/P transforms the...Ch. 9.5 - Prob. 38ECh. 9.6 - For each predator-prey system, determine which of...Ch. 9.6 - Each system of differential equations is a model...Ch. 9.6 - The system of differential equations...Ch. 9.6 - Prob. 4ECh. 9.6 - Prob. 5ECh. 9.6 - Prob. 6ECh. 9.6 - Prob. 7ECh. 9.6 - Graphs of populations of two species are shown....Ch. 9.6 - Populations of aphids and ladybugs are modeled by...Ch. 9.6 - Prob. 11ECh. 9 - (a) What is a differential equation? (b) What is...Ch. 9 - What can you say about the solutions of the...Ch. 9 - What is a direction field for the differential...Ch. 9 - Explain how Euler's method works.Ch. 9 - What is a separable differential equation? How do...Ch. 9 - What is a first-order linear differential...Ch. 9 - (a) Write a differential equation that expresses...Ch. 9 - (a) Write the logistic differential equation. (b)...Ch. 9 - (a) Write Lotka-Volterra equations to model...Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Determine whether the statement is true or false....Ch. 9 - Prob. 6RQCh. 9 - Determine whether the statement is true or false....Ch. 9 - (a) A direction field for the differential...Ch. 9 - (a) Sketch a direction field for the differential...Ch. 9 - (a) A direction field for the differential...Ch. 9 - (a) Use Euler's method with step size 0.2 to...Ch. 9 - Solve the differential equation. 5. y=xesinxycosxCh. 9 - Solve the differential equation. 6. dxdy=1t+xtxCh. 9 - Solve the differential equation. 7. 2yey2y=2x+3xCh. 9 - Solve the differential equation. 8. x2yy=2x3e1/xCh. 9 - Solve the initial-value problem. 9....Ch. 9 - Solve the initial-value problem. 10. (1 + cos x)...Ch. 9 - Solve the initial-value problem. 11. xy' y = x ln...Ch. 9 - Solve the initial-value problem y' = 3x2ey, y(0) =...Ch. 9 - Find the orthogonal trajectories of the family of...Ch. 9 - Find the orthogonal trajectories of the family of...Ch. 9 - (a) Write the solution of the initial-value...Ch. 9 - (a) The population of the world was 6.1 billion in...Ch. 9 - The von Bertalanffy growth model is used to...Ch. 9 - A tank contains 100 L of pure water. Brine that...Ch. 9 - One model for the spread of an epidemic is that...Ch. 9 - The Brentano-Stevens Law in psychology models the...Ch. 9 - The transport of a substance across a capillary...Ch. 9 - Populations of birds and insects are modeled by...Ch. 9 - Suppose the model of Exercise 22 is replaced by...Ch. 9 - Barbara weighs 60 kg and is on a diet of 1600...Ch. 9 - Find all functions f such that f' is continuous...Ch. 9 - A student forgot the Product Rule for...Ch. 9 - Let f be a function with the property that f(0) =...Ch. 9 - Find all functions f that satisfy the equation...Ch. 9 - Find the curve y = f(x) such that f(x) 0, f(0) =...Ch. 9 - A subtangent is a portion of the x-axis that lies...Ch. 9 - A peach pie is taken out of the oven at 5:00 pm....Ch. 9 - Snow began to fall during the morning of February...Ch. 9 - A dog sees a rabbit running in a straight line...Ch. 9 - (a) Suppose that the dog in Problem 9 runs twice...Ch. 9 - A planning engineer for a new alum plant must...Ch. 9 - Find the curve that passes through the point (3,...Ch. 9 - Recall that the normal line to a curve at a point...Ch. 9 - Find all curves with the properly that if the...Ch. 9 - Find all curves with the property that if a line...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- Question 3 (5pt): A chemical reaction. In an elementary chemical reaction, single molecules of two reactants A and B form a molecule of the product C : ABC. The law of mass action states that the rate of reaction is proportional to the product of the concentrations of A and B: d[C] dt = k[A][B] (where k is a constant positive number). Thus, if the initial concentrations are [A] = = a moles/L and [B] = b moles/L we write x = [C], then we have (E): dx dt = k(ax)(b-x) 1 (a) Write the differential equation (E) with separate variables, i.e. of the form f(x)dx = g(t)dt. (b) Assume first that a b. Show that 1 1 1 1 = (a - x) (b - x) - a) a - x b - x b) (c) Find an antiderivative for the function f(x) = (a-x) (b-x) using the previous question. (d) Solve the differentiel equation (E), i.e. find x as a function of t. Use the fact that the initial concentration of C is 0. (e) Now assume that a = b. Find x(t) assuming that a = b. How does this expression for x(t) simplify if it is known that [C] =…arrow_forward3) Find the volume of the solid that lies inside both the sphere x² + y² + z² cylinder x²+y² = 1. = 4 and thearrow_forward1) Compute the following limit. lim x-0 2 cos(x) 2x² - x4arrow_forward
- y = f(x) b C The graph of y = f(x) is shown in the figure above. On which of the following intervals are dy > 0 and dx d²y dx2 <0? I. aarrow_forward3 2 1 y O a The graph of the function f is shown in the figure above. Which of the following statements about f is true? о limb f(x) = 2 Olima f(x) = 2 о lima f (x) = lim x →b f(x) → f (x) = 1 limb. lima f(x) does not existarrow_forwardQuestion 1 (1pt). The graph below shows the velocity (in m/s) of an electric autonomous vehicle moving along a straight track. At t = 0 the vehicle is at the charging station. 1 8 10 12 0 2 4 6 (a) How far is the vehicle from the charging station when t = 2, 4, 6, 8, 10, 12? (b) At what times is the vehicle farthest from the charging station? (c) What is the total distance traveled by the vehicle?arrow_forwardQuestion 2 (1pt). Evaluate the following (definite and indefinite) integrals (a) / (e² + ½) dx (b) S (3u 2)(u+1)du (c) [ cos³ (9) sin(9)do .3 (d) L³ (₂ + 1 dzarrow_forward= Question 4 (5pt): The Orchard Problem. Below is the graph y f(t) of the annual harvest (assumed continuous) in kg/year from my cranapple orchard t years after planting. The trees take about 25 years to get established, and from that point on, for the next 25 years, they give a fairly good yield. But after 50 years, age and disease are taking their toll, and the annual yield is falling off. 40 35 30 。 ៣៩ ថា8 8 8 8 6 25 20 15 10 y 5 0 0 5 10 15 20 25 30 35 40 45 50 55 60 The orchard problem is this: when should the orchard be cut down and re- planted, thus starting the cycle again? What you want to do is to maximize your average harvest per year over a full cycle. Of course there are costs to cutting the orchard down and replanting, but it turns out that we can ignore these. The first cost is the time it takes to cut the trees down and replant but we assume that this can effectively be done in a week, and the loss of time is negligible. Secondly there is the cost of the labour to cut…arrow_forwardnd ave a ction and ave an 48. The domain of f y=f'(x) x 1 2 (= x<0 x<0 = f(x) possible. Group Activity In Exercises 49 and 50, do the following. (a) Find the absolute extrema of f and where they occur. (b) Find any points of inflection. (c) Sketch a possible graph of f. 49. f is continuous on [0,3] and satisfies the following. X 0 1 2 3 f 0 2 0 -2 f' 3 0 does not exist -3 f" 0 -1 does not exist 0 ve tes where X 0 < x <1 1< x <2 2arrow_forwardNumerically estimate the value of limx→2+x3−83x−9, rounded correctly to one decimal place. In the provided table below, you must enter your answers rounded exactly to the correct number of decimals, based on the Numerical Conventions for MATH1044 (see lecture notes 1.3 Actions page 3). If there are more rows provided in the table than you need, enter NA for those output values in the table that should not be used. x→2+ x3−83x−9 2.1 2.01 2.001 2.0001 2.00001 2.000001arrow_forwardFind the general solution of the given differential equation. (1+x)dy/dx - xy = x +x2arrow_forwardEstimate the instantaneous rate of change of the function f(x) = 2x² - 3x − 4 at x = -2 using the average rate of change over successively smaller intervals.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningCollege AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
Limits and Continuity; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=9brk313DjV8;License: Standard YouTube License, CC-BY