
(a)
Interpretation:
The classification of
Concept introduction:
The strong electrolytes are those electrolytes having an aqueous solution as a good conductor of electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte.

Answer to Problem 3ECE
The compound
Explanation of Solution
The electrolyte is a species that dissolves in solution and conducts electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte. Nonelectrolytes are the species whose aqueous solution is the non-conductor of electricity.
The compound
The compound
(b)
Interpretation:
The major species in the aqueous solution of
Concept introduction:
The strong electrolytes are those electrolytes having an aqueous solution as a good conductor of electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte.

Answer to Problem 3ECE
The major species in the aqueous solution of
Explanation of Solution
The electrolyte is a species that dissolves in solution and conducts electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte. Nonelectrolytes are the species whose aqueous solution is the non-conductor of electricity.
The compounds which get completely dissolved in water are called major ionic species. The electrolyte or compounds which partially dissolved in water are called minor ionic species.
The compound
The net ionic equation when
Therefore, the major species in the solution is
The major species in the aqueous solution of
(c)
Interpretation:
The minor species in the aqueous solution of
Concept introduction:
The strong electrolytes are those electrolytes having an aqueous solution as a good conductor of electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte.

Answer to Problem 3ECE
There is no minor species in the aqueous solution of
Explanation of Solution
The electrolyte is a species that dissolves in solution and conducts electricity. The electrolytes that ionize completely are known as strong electrolytes. The electrolyte which does not ionize completely and has an aqueous solution as a poor conductor is known as a weak electrolyte. Nonelectrolytes are the species whose aqueous solution is the non-conductor of electricity.
The compounds which get completely dissolved in water are called major ionic species. The electrolyte or compounds which partially dissolved in water are called minor ionic species.
The compound
The net ionic equation when
Therefore, there is no minor species in the aqueous solution of
There is no minor species in the aqueous solution of
Want to see more full solutions like this?
Chapter 9 Solutions
Introductory Chemistry: An Active Learning Approach
- Michael Reactions 19.52 Draw the products from the following Michael addition reactions. 1. H&C CH (a) i 2. H₂O* (b) OEt (c) EtO H₂NEt (d) ΕΙΟ + 1. NaOEt 2. H₂O' H H 1. NaOEt 2. H₂O*arrow_forwardRank the labeled protons (Ha-Hd) in order of increasing acidity, starting with the least acidic. НОН НЬ OHd Онсarrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? ? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C :0 T Add/Remove step Garrow_forward
- The following equations represent the formation of compound MX. What is the AH for the electron affinity of X (g)? X₂ (g) → 2X (g) M (s) → M (g) M (g) M (g) + e- AH = 60 kJ/mol AH = 22 kJ/mol X (g) + e-X (g) M* (g) +X (g) → MX (s) AH = 118 kJ/mol AH = ? AH = -190 kJ/mol AH = -100 kJ/mol a) -80 kJ b) -30 kJ c) -20 kJ d) 20 kJ e) 156 kJarrow_forwardA covalent bond is the result of the a) b) c) d) e) overlap of two half-filled s orbitals overlap of a half-filled s orbital and a half-filled p orbital overlap of two half-filled p orbitals along their axes parallel overlap of two half-filled parallel p orbitals all of the abovearrow_forwardCan the target compound at right be efficiently synthesized in good yield from the unsubstituted benzene at left? starting material target If so, draw a synthesis below. If no synthesis using reagents ALEKS recognizes is possible, check the box under the drawing area. Be sure you follow the standard ALEKS rules for submitting syntheses. + More... Note for advanced students: you may assume that you are using a large excess of benzene as your starting material. C T Add/Remove step X ноarrow_forward
- Which one of the following atoms should have the largest electron affinity? a) b) c) d) 으으 e) 1s² 2s² 2p6 3s¹ 1s² 2s² 2p5 1s² 2s² 2p 3s² 3p² 1s² 2s 2p 3s² 3p6 4s2 3ds 1s² 2s² 2p6arrow_forwardAll of the following are allowed energy levels except _. a) 3f b) 1s c) 3d d) 5p e) 6sarrow_forwardA student wants to make the following product in good yield from a single transformation step, starting from benzene. Add any organic reagents the student is missing on the left-hand side of the arrow, and any addition reagents that are necessary above or below the arrow. If this product can't be made in good yield with a single transformation step, check the box below the drawing area. Note for advanced students: you may assume that an excess of benzene is used as part of the reaction conditions. : ☐ + I X This product can't be made in a single transformation step.arrow_forward
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningIntroductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning




