Chemical Principles
8th Edition
ISBN: 9781337247269
Author: Steven S. Zumdahl; Donald J. DeCoste
Publisher: Cengage Learning US
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 39E
Calculate the energy required to heat
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionChapter 9 Solutions
Chemical Principles
Ch. 9 - Objects placed together eventually reach the same...Ch. 9 - What is meant by the term lower in energy? Which...Ch. 9 - A fire is started in a fireplace by striking a...Ch. 9 - Liquid water turns to ice. Is this process...Ch. 9 - Consider the following statements: “Heat is a form...Ch. 9 - Prob. 6DQCh. 9 - Explain why oceanfront areas generally have...Ch. 9 - Predict the signs of q and w for the process of...Ch. 9 - Hess’s law is really just another statement of the...Ch. 9 - Prob. 10DQ
Ch. 9 - Prob. 11DQCh. 9 - Prob. 12DQCh. 9 - Prob. 13DQCh. 9 - Prob. 14DQCh. 9 - Prob. 15ECh. 9 - Consider the following potential energy diagrams...Ch. 9 - Consider an airplane trip from Chicago, Illinois,...Ch. 9 - Consider the following diagram when answering the...Ch. 9 - Assuming gasoline is pure C8H18(l) , predict the...Ch. 9 - Prob. 20ECh. 9 - Prob. 21ECh. 9 - A piston performs work of 210.Latm on the...Ch. 9 - A system undergoes a process consisting of the...Ch. 9 - Calculate the internal energy change for each of...Ch. 9 - Prob. 25ECh. 9 - Prob. 26ECh. 9 - One mole of H2O(g) at 1.00atm and 100.C occupies a...Ch. 9 - Prob. 28ECh. 9 - Prob. 29ECh. 9 - Prob. 30ECh. 9 - Prob. 31ECh. 9 - Are the following processes exothermic or...Ch. 9 - Prob. 33ECh. 9 - Prob. 34ECh. 9 - Prob. 35ECh. 9 - Prob. 36ECh. 9 - Prob. 37ECh. 9 - For the following reactions at constant pressure,...Ch. 9 - Calculate the energy required to heat 1.00kg of...Ch. 9 - Calculate q , w , E , and H for the process in...Ch. 9 - Consider 111J of heat added to 30.3g of Ne on STP...Ch. 9 - Consider a sample containing 2.00moles of a...Ch. 9 - Prob. 43ECh. 9 - The specific heat capacity of silver is...Ch. 9 - Consider the substances in Table9.3 . Which...Ch. 9 - A 150.0-g sample of a metal at 75.0C is added to...Ch. 9 - Prob. 47ECh. 9 - Prob. 48ECh. 9 - Prob. 49ECh. 9 - Prob. 50ECh. 9 - In a coffee cup calorimeter, 50.0mL of 0.100MAgNO3...Ch. 9 - In a coffee cup calorimeter, 100.0mL of 1.0MNaOH...Ch. 9 - A coffee cup calorimeter initially contains 125g...Ch. 9 - In a coffee cup calorimeter, 1.60g of NH4NO3 is...Ch. 9 - Prob. 55ECh. 9 - Consider the reaction...Ch. 9 - The heat capacity of a bomb calorimeter was...Ch. 9 - The combustion of 0.1584g benzoic acid increases...Ch. 9 - Prob. 59ECh. 9 - Calculate w and E when 1mole of a liquid is...Ch. 9 - Prob. 61ECh. 9 - Calculate H for the reaction...Ch. 9 - Given the following data:...Ch. 9 - Given the following data:...Ch. 9 - Prob. 65ECh. 9 - Given the following data:...Ch. 9 - Combustion reactions involve reacting a substance...Ch. 9 - Given the following data: 2O3(g)3O2(g)H=427kJ...Ch. 9 - Prob. 69ECh. 9 - Prob. 70ECh. 9 - Prob. 71ECh. 9 - The combustion of methane can be represented as...Ch. 9 - Prob. 73ECh. 9 - Prob. 74ECh. 9 - Calculate H for each of the following reactions...Ch. 9 - The reusable booster rockets of the space shuttle...Ch. 9 - Prob. 77ECh. 9 - Prob. 78ECh. 9 - At 298K , the standard enthalpies of formation for...Ch. 9 - Prob. 80ECh. 9 - Prob. 81ECh. 9 - The standard enthalpy of combustion of ethene gas...Ch. 9 - Prob. 83ECh. 9 - Prob. 84ECh. 9 - Prob. 85ECh. 9 - Assume that 4.19106kJ of energy is needed to heat...Ch. 9 - Prob. 87ECh. 9 - Prob. 88ECh. 9 - Prob. 89ECh. 9 - Some automobiles and buses have been equipped to...Ch. 9 - Consider the following cyclic process carried out...Ch. 9 - Determine E for the process H2O(l)H2O(g) at 25C...Ch. 9 - The standard enthalpy of formation of H2O(l) at...Ch. 9 - Prob. 94AECh. 9 - Prob. 95AECh. 9 - Prob. 96AECh. 9 - Prob. 97AECh. 9 - Prob. 98AECh. 9 - Prob. 99AECh. 9 - Prob. 100AECh. 9 - Prob. 101AECh. 9 - Prob. 102AECh. 9 - Prob. 103AECh. 9 - Prob. 104AECh. 9 - Prob. 105AECh. 9 - High-quality audio amplifiers generate large...Ch. 9 - Prob. 107AECh. 9 - Prob. 108AECh. 9 - Prob. 109AECh. 9 - Prob. 110AECh. 9 - Prob. 111AECh. 9 - Prob. 112AECh. 9 - Prob. 113AECh. 9 - Prob. 114AECh. 9 - Prob. 115AECh. 9 - The heat required to raise the temperature from...Ch. 9 - Prob. 117CPCh. 9 - Prob. 118CPCh. 9 - The heat of vaporization of water at the normal...Ch. 9 - Consider the following reaction at 248C and...Ch. 9 - Prob. 121CPCh. 9 - Prob. 122CPCh. 9 - Prob. 123CPCh. 9 - You have a 1.00-mole sample of water at -30.C ,...Ch. 9 - Prob. 125MPCh. 9 - A gaseous hydrocarbon reacts completely with...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- The combustion of methane can be represented as follows: a. Use the information given above to determine the value of H for the combustion of methane to form CO2(g) and 2H2O(l). b. What is Hf for an element in its standard state? Why is this? Use the figure above to support your answer. c. How does H for the reaction CO2(g) + 2H2O (1) CH4(g) + O2(g) compare to that of the combustion of methane? Why is this?arrow_forwardAt 298 K, the standard enthalpies of formation for C2H2(g) and C6H6(l) are 227 kJ/mol and 49 kJ/mol, respectively. a. Calculate H for C6H6(l)3C2H2(g) b. Both acetylene (C2H2) and benzene (C6H6) can be used as fuels. Which compound would liberate more energy per gram when combusted in air?arrow_forwardThe enthalpy change for the following reaction is 393.5 kJ. C(s,graphite)+O2(g)CO2(g) (a) Is energy released from or absorbed by the system in this reaction? (b) What quantities of reactants and products are assumed? (c) Predict the enthalpy change observed when 3.00 g carbon burns in an excess of oxygen.arrow_forward
- Gasohol, a mixture of gasoline and ethanol, C2H5OH, is used as automobile fuel. The alcohol releases energy in a combustion reaction with O2. C2H5OH(l)+3O2(g)2CO2(g)+3H2O(l) If 0.115 g ethanol evolves 3.62 kJ when burned at constant pressure, calculate the combustion enthalpy for ethanol.arrow_forwardThe formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forwardCoal is used as a fuel in some electric-generating plants. Coal is a complex material, but for simplicity we may consider it to be a form of carbon. The energy that can be derived from a fuel is sometimes compared with the enthalpy of the combustion reaction: C(s)+O2(g)CO2(g) Calculate the standard enthalpy change for this reaction at 25C. Actually, only a fraction of the heat from this reaction is available to produce electric energy. In electric generating plants, this reaction is used to generate heat for a steam engine, which turns the generator. Basically the steam engine is a type of heat engine in which steam enters the engine at high temperature (Th), work is done, and the steam then exits at a lower temperature (Tl). The maximum fraction, f, of heat available to produce useful energy depends on the difference between these temperatures (expressed in kelvins), f = (Th Tl)/Th. What is the maximum heat energy available for useful work from the combustion of 1.00 mol of C(s) to CO2(g)? (Assume the value of H calculated at 25C for the heat obtained in the generator.) It is possible to consider more efficient ways to obtain useful energy from a fuel. For example, methane can be burned in a fuel cell to generate electricity directly. The maximum useful energy obtained in these cases is the maximum work, which equals the free-energy change. Calculate the standard free-energy change for the combustion of 1.00 mol of C(s) to CO2(g). Compare this value with the maximum obtained with the heat engine described here.arrow_forward
- When 1.000 g of gaseous butane, C4H10, is burned at 25C and 1.00 atm pressure, H2O(l) and CO2(g) are formed with the evolution of 49.50 kJ of heat. a Calculate the molar enthalpy of formation of butane. (Use enthalpy of formation data for H2O and CO2.) b Gf of butane is 17.2 kJ/mol. What is G for the combustion of 1 mol butane? c From a and b, calculate S for the combustion of 1 mol butane.arrow_forward9.42 Why is enthalpy generally more useful than internal energy in the thermodynamics of real world systems?arrow_forwardHow is the sign of q, heat, defined? How does it relate to the total energy of the system?arrow_forward
- The thermochemical equation for the burning of methane, the main component of natural gas, is CH4(g)+2O2(g)CO2(g)+2H2O(l)H=890kJ (a) Is this reaction endothermic or exothermic? (b) What quantities of reactants and products are assumed if H = 890 kJ? (c) What is the enthalpy change when 1.00 g methane burns in an excess of oxygen?arrow_forwardA 50-mL solution of a dilute AgNO3 solution is added to 100 mL of a base solution in a coffee-cup calorimeter. As Ag2O(s) precipitates, the temperature of the solution increases from 23.78 C to 25.19 C. Assuming that the mixture has the same specific heat as water and a mass of 150 g, calculate the heat q. Is the precipitation reaction exothermic or endothermic?arrow_forwardWhite phosphorus, P4, ignites in air to produce P4O10. When 3.56 g P4 is burned, 85.8 kJ of thermal energy is evolved at constant pressure. Calculate the combustion enthalpy of P4.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
Chemistry: An Atoms First Approach
Chemistry
ISBN:9781305079243
Author:Steven S. Zumdahl, Susan A. Zumdahl
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY