PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
10th Edition
ISBN: 9781337888462
Author: SERWAY
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 30P
(a)
To determine
The impulse imparted by the floor to the vehicle.
(b)
To determine
Whether the floor does any work on the vehicle.
(c)
To determine
Whether the final momentum comes from floor or not.
(d)
To determine
Whether the final kinetic energy comes from the floor or not.
(e)
To determine
Whether the force is causing the forward acceleration of the vehicle.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A 1.5 kg block and a 2.7 kg block are attached to opposite ends of a light rope. The rope hangs over a solid, frictionless pulley that is 29cm in diameter and has a mass of 0.78kg. The pulley can be modeled as a cylinder. When the blocks are released, what is the acceleration of the lighter block?
Two hangers are attached by a string to a vertically mounted pulley system as shown. One disk is bigger than the other, and the disks are attached to each other such that they rotate together. The axle has negligible friction. The mass of the large disk is 1200 grams and the radius is 11 cm. The mass of the small disk is 400 grams and the radius is 4 cm. The high hanger has a mass of 200 grams and starts 80 cm above the ground. The lower mass starts on the ground and has a mass of 100 grams. The hangers are released from rest. What is the velocity of the 200 gram hanger when it hits the floor?
In a popular amusement park ride, a rotating cylinder of radius 3.00 m is set in rotation at an angular speed of 5.00 rad/s, as in Figure P7.75. The floor then drops away, leaving the riders suspended against the wall in a vertical position. What minimum coefficient of friction between a rider’s clothing and the wall is needed to keep the rider from slipping? Hint: Recall that the magnitude of the maximum force of static friction is equal to μsn, where n is the normal force—in this case, the force causing the centripetal acceleration.
Chapter 9 Solutions
PHYSICS FOR SCI.AND ENGR W/WEBASSIGN
Ch. 9.1 - Two objects have equal kinetic energies. How do...Ch. 9.1 - Your physical education teacher throws a baseball...Ch. 9.3 - Two objects are at rest on a frictionless surface....Ch. 9.3 - Rank an automobile dashboard, seat belt, and air...Ch. 9.4 - In a perfectly inelastic one-dimensional collision...Ch. 9.4 - A table-tennis ball is thrown at a stationary...Ch. 9.6 - A baseball bat of uniform density is cut at the...Ch. 9.7 - A cruise ship is moving at constant speed through...Ch. 9 - A particle of mass m moves with momentum of...Ch. 9 - A 3.00-kg particle has a velocity of...
Ch. 9 - A baseball approaches home plate at a speed of...Ch. 9 - A 65.0-kg boy and his 40.0-kg sister, both wearing...Ch. 9 - Two blocks of masses m and 3m are placed on a...Ch. 9 - When you jump straight up as high as you can, what...Ch. 9 - A glider of mass m is free to slide along a...Ch. 9 - You and your brother argue often about how to...Ch. 9 - The front 1.20 m of a 1 400-kg car Ls designed as...Ch. 9 - The magnitude of the net force exerted in the x...Ch. 9 - Water falls without splashing at a rate of 0.250...Ch. 9 - A 1 200-kg car traveling initially at vCi = 25.0...Ch. 9 - A railroad car of mass 2.50 104 kg is moving with...Ch. 9 - Four railroad cars, each of mass 2.50 104 kg, are...Ch. 9 - A car of mass m moving at a speed v1 collides and...Ch. 9 - A 7.00-g bullet, when fired from a gun into a...Ch. 9 - A tennis ball of mass 57.0 g is held just above a...Ch. 9 - (a) Three carts of masses m1 = 4.00 kg, m2 = 10.0...Ch. 9 - You have been hired as an expert witness by an...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - Two shuffleboard disks of equal mass, one orange...Ch. 9 - A 90.0-kg fullback running east with a speed of...Ch. 9 - A proton, moving with a velocity of vii, collides...Ch. 9 - A uniform piece of sheet metal is shaped as shown...Ch. 9 - Explorers in the jungle find an ancient monument...Ch. 9 - A rod of length 30.0 cm has linear density (mass...Ch. 9 - Consider a system of two particles in the xy...Ch. 9 - The vector position of a 3.50-g particle moving in...Ch. 9 - You have been hired as an expert witness in an...Ch. 9 - Prob. 30PCh. 9 - A 60.0-kg person bends his knees and then jumps...Ch. 9 - A garden hose is held as shown in Figure P9.32....Ch. 9 - A rocket for use in deep space is to be capable of...Ch. 9 - A rocket has total mass Mi = 360 kg, including...Ch. 9 - An amateur skater of mass M is trapped in the...Ch. 9 - (a) Figure P9.36 shows three points in the...Ch. 9 - Review. A 60.0-kg person running at an initial...Ch. 9 - A cannon is rigidly attached to a carriage, which...Ch. 9 - A 1.25-kg wooden block rests on a table over a...Ch. 9 - A wooden block of mass M rests on a table over a...Ch. 9 - Two gliders are set in motion on a horizontal air...Ch. 9 - Pursued by ferocious wolves, you are in a sleigh...Ch. 9 - Review. A student performs a ballistic pendulum...Ch. 9 - Why is the following situation impossible? An...Ch. 9 - Review. A bullet of mass m = 8.00 g is fired into...Ch. 9 - Review. A bullet of mass m is fired into a block...Ch. 9 - A 0.500-kg sphere moving with a velocity expressed...Ch. 9 - Prob. 48APCh. 9 - Review. A light spring of force constant 3.85 N/m...Ch. 9 - Prob. 50APCh. 9 - Review. There are (one can say) three coequal...Ch. 9 - Sand from a stationary hopper falls onto a moving...Ch. 9 - Two particles with masses m and 3m are moving...Ch. 9 - On a horizontal air track, a glider of mass m...
Knowledge Booster
Similar questions
- The puck in Figure P11.46 has a mass of 0.120 kg. The distance of the puck from the center of rotation is originally 40.0 cm, and the puck is sliding with a speed of 80.0 cm/s. The string is pulled downward 15.0 cm through the hole in the frictionless table. Determine the work done on the puck. (Suggestion: Consider the change of kinetic energy.) Figure P11.46arrow_forwardWhat? This problem again? Not exactly. A block with mass m,ị = 3.00 kg sits on a horizontal table and is attached to a rope. The rope then passes over a MASSIVE pulley this time and is attached to a block of mass m2 = 2.00 kg, which hangs vertically (see picture). The coefficient of kinetic friction of the interface between the table and m, is 0.1. You may assume the pulley section is a disk with a mass of 2 kg. We will keep the pulley frictionless for brevity. Ideal disk pulley with mass Find the acceleration of the blocks using your choice of either Newton's Laws or the energy conservation method. Yes, I can actually read your minds from here; of 2 kg and the answer is no, you do not need the radius of the pulley.arrow_forwardA thin light wire is wrapped around the edge of a wheel as shown in the figure. The wheel rotates frictionlesly around a fixed horizontal axis that passes through its center. The wheel is a smooth (uniform) disk of radius R = 0.28 m. A block with mass m = 4.20 kg is suspended from free end of the wire. The system is released and the suspended block lands with constant acceleration. If the suspended block travels 3 m down in 2 s, what is the mass of the wheel? (Take the moment of ineartia of the disk as I =1/2 MR2)arrow_forward
- A bike (including wheels) and rider have a combined mass of 68.5 kg and the two wheels of the bike weigh 0.95 kg each. The wheels can be treated as circular hoops. The cyclist freewheels down a hill starting at a speed of 3.25 m/s. What is their speed at the bottom of the hill which is 12m lower than the top?arrow_forwardA 650 g hollow ball (spherical shell) is rolling along a horizontal floor at 4 m/s for a distance of 10 m. After travelling for 10 m is rolls up a 25 degree incline. How far up the incline does the ball roll when it comes to a momentary stop?arrow_forwardTwo crates of mass m1 = 15 kg and m2 = 25 kg are connected by a cable that is strung over a pulley of mass mpulley = 20 kg as shown in Figure P8.58. There is no friction between crate 1 and the table. (a) Make a sketch showing all theforces on both crates and the pulley. (b) Express Newton’s second law for the crates (translational motion)and for the pulley (rotational motion). The linear acceleration a of the crates, the angular acceleration a(alpha) of the pulley, and the tensions in the right and left portions of the rope are unknowns. (c) What is the relation between a and a(alpha)? (d) Find the acceleration of the crates. (e) Find the tensions in the right and left por- tions of the rope.arrow_forward
- The lightweight wheel on a road bike has a moment of inertia of 0.097 kg⋅m2. A mechanic, checking the alignment of the wheel, gives it a quick spin; it completes 5 rotations in 2.2 s. To bring the wheel to rest, the mechanic gently applies the disk brakes, which squeeze pads against a metal disk connected to the wheel. The pads touch the disk 7.1 cm from the axle, and the wheel slows down and stops in 1.5 s. What is the magnitude of the friction force on the disk?arrow_forwardA 210 g , 34.0-cm-diameter turntable rotates on frictionless bearings at 65.0 rpm . A 21.0 g block sits at the center of the turntable. A compressed spring shoots the block radically outward along a frictionless groove in the surface of the turntable. What is the turntable's rotation angular velocity when the block reaches the outer edge?arrow_forwardA professor sits on a rotating stool that is spinning at 10.0 rpm while she holds a heavy weight in each of her hands. Her outstretched hands are 0.705 m from the axis of rotation, which passes through her head into the center of the stool. When she symmetrically pulls the weights in closer to her body, her angular speed increases to 20.5 rpm. Neglecting the mass of the professor, how far are the weights from the rotational axis after she pulls her arms in? distance: marrow_forward
- A 30-cm-diameter, 1.6 kg solid turntable rotates on a 1.6-cm-diameter, 450 g shaft at a constant 33 rpm. When you hit the stop switch, a brake pad presses against the shaft and brings the turntable to a halt in 15 seconds. How much friction force does the brake pad apply to the shaft?arrow_forwardA professor sits on a rotating stool that is spinning at 10.0 rpm while she holds a heavy weight in each of her hands. Her outstretched hands are 0.745 m from the axis of rotation, which passes through her head into the center of the stool. When she symmetrically pulls the weights in closer to her body, her angular speed increases to 40.5 rpm. Neglecting the mass of the professor, how far are the weights from the rotational axis after she pulls her arms in? distance: about us careers privacy policy terms of use contact us help tv W MacBook Air 8828arrow_forwardA lawnmower engine brings a 1 m-long by 0.1 m-wide cutting blade of mass 2.55 kg from rest to an angular speed of 1800 rpm in 1.27 seconds. What is the average power supplied by the engine during this period? 2910 W 2940 W 2970 W 3000 W 3030 Warrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning