
(a)
Whether
(a)

Answer to Problem 29P
Aluminum has larger buoyant force when it is immersed in water, since for the same mass aluminum is less dense and has larger volume than lead.
Explanation of Solution
Buoyant force is the force acting on object that is partially or completely immersed in water. Buoyant force is equal to weight of the water displaced by the object. Water displaced by the object depends on the volume of the object. Therefore, buoyant force is large for an object having larger volume than small volume.
Conclusion:
Lead is denser than aluminum. Therefore, for same mass lead has small volume than aluminum. Aluminum displaces more water than lead. Therefore, buoyant force will be larger for aluminum than lead.
Therefore, Aluminum has larger buoyant force when it is immersed in water, since for the same mass aluminum is less dense and has larger volume than lead.
(b)
Whether
(b)

Answer to Problem 29P
Steel is denser than wood. Since their masses are same volume is larger for wood than steel. Since floating wood displaces more water than sinking steel. Buoyant force is larger force wood that is floating than steel that is sinking.
Explanation of Solution
Buoyant force is the force acting on object that is partially or completely immersed in water. Buoyant force is equal to weight of the water displaced by the object. Water displaced by the object depends on the volume of the object. Therefore, buoyant force is large for an object having larger volume than small volume.
Conclusion:
Steel is denser than wood. Since both have same mass, volume of wood is larger compared to steel. Even though the wood is floating, it displaces more water than does steel. Buoyant force is equal to weight of the water displaced. Therefore, wood has larger buoyant force than steel, since water displaced by wood that is floating is larger compared to steel that is sinking.
Therefore, steel is denser than wood. Since their masses are same volume is larger for wood than steel. Since floating wood displaces more water than sinking steel. Buoyant force is larger force wood that is floating than steel that is sinking.
(c)
Find quantitative answers for part (a) and part (b).
(c)

Explanation of Solution
Buoyant force is equal to weight of the water displaced by object.
Write the expression for buoyant force.
Here,
Substitute
Here,
Similarly, write the expression for buoyant force acting on Aluminum.
Here,
Similarly, write the expression for buoyant force acting on steel.
Here,
Since wood is floating, its buoyant force is equal to its weight.
Calculate weight of wood.
Here,
Conclusion:
Substitute
Substitute
Substitute
Substitute
From above equations,
Therefore, buoyant force is larger force wood that is floating than steel that is sinking and Aluminum has larger buoyant force than lead.
Want to see more full solutions like this?
Chapter 9 Solutions
Physics
- From your examination of the graph created using the data in Data Table 4 of Period, T vs √L . What would you determine is the relationship between the period of a pendulum and the length of a pendulum?arrow_forwardIn a certain bimetallic strip, the brass strip is 0.100% longer than the steel strip at a temperature of 283°C. At what temperature do the two strips have the same length? Coefficients of linear expansion for steel α = 12.0 × 10−6 K−1 and for brass α = 19.0 × 10−6 K−1 (see Table 13.2).arrow_forwardReview Conceptual Example 2 before attempting this problem. Two slits are 0.158 mm apart. A mixture of red light (wavelength = 693 nm) and yellow-green light (wavelength = 567 nm) falls on the slits. A flat observation screen is located 2.42 m away. What is the distance on the screen between the third-order red fringe and the third-order yellow-green fringe? m = 3 m = 3 m = 0 m = 3 m = 3 Fringes on observation screenarrow_forward
- A film of oil lies on wet pavement. The refractive index of the oil exceeds that of the water. The film has the minimum nonzero thickness such that it appears dark due to destructive interference when viewed in visible light with wavelength 643 nm in vacuum. Assuming that the visible spectrum extends from 380 to 750 nm, what is the longest visible wavelength (in vacuum) for which the film will appear bright due to constructive interference? Number Unitsarrow_forwardA piece of metal is placed on top of a 2.0 - kg wooden block (mass density = 562 kg/m³) piece. UseArchimedes' principle to calculate the mass (in kg) of copper if the top of the wood surface is exactly at thewater's surface?arrow_forwardA filmmaker wants to achieve an interesting visual effect by filming a scene through a converging lens with a focal length of 50.0 m. The lens is placed betwen the camera and a horse, which canters toward the camera at a constant speed of 7.9 m/s. The camera starts rolling when the horse is 36.0 m from the lens. Find the average speed of the image of the horse (a) during the first 2.0 s after the camera starts rolling and (b) during the following 2.0 s.arrow_forward
- What is the direction of the magnetic force on a NEGATIVE CHARGE that moves as shown in each of the six cases?arrow_forwardHi! I need help with these calculations for part i and part k for a physics Diffraction Lab. We used a slit width 0.4 mm to measure our pattern.arrow_forwardExamine the data and % error values in Data Table 3 where the angular displacement of the simple pendulum decreased but the mass of the pendulum bob and the length of the pendulum remained constant. Describe whether or not your data shows that the period of the pendulum depends on the angular displacement of the pendulum bob, to within a reasonable percent error.arrow_forward
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON





