
Briefly explain how the larger jovian moons tend to differ in general from the smaller ones. How does the formation process of the moons explain these differences?

The difference between large Jovian moons from the smaller ones.
Answer to Problem 1RQ
The large Jovian moon is different from the small Jovian moon in appearance and the properties by which they orbit around the planet.
Explanation of Solution
The large Jovian moon is different from the small Jovian moon in appearance and the properties by which they orbit around the planet.
Most of the small moon such as (Calypso, Pandora, Phoebe, Janus)are irregular in shape and sometimes they resemble to potatoes, peanuts and other snacks while mostly all the large moons are spherical in shape such as (Titan, Ganymede, Io , Europa).
The small objects have very less gravity, and it is very weak that it cannot force the rigid material by which the moons are made of to form the sphere.
Many small moons are fragments of large moons that are broken apart so they have similar characteristic as the larger moon.
The two largest moons, Titan of Saturn and Ganymede of Jupiter are bigger than Mercury. Almost all of the moderate to large size moons orbit around the planet in the same way as planets orbit around the sun.
Many of the small moons also have orbits that are extremely elliptical to their host planets and some moons have retrograde motion too.
Conclusion:
Thus, the large Jovian moon is different from the small Jovian moon in appearance and the properties by which they orbit around the planet.
Want to see more full solutions like this?
Chapter 9 Solutions
Life in the Universe (4th Edition)
Additional Science Textbook Solutions
Campbell Essential Biology with Physiology (5th Edition)
Introductory Chemistry (6th Edition)
College Physics: A Strategic Approach (3rd Edition)
Campbell Biology in Focus (2nd Edition)
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Anatomy & Physiology (6th Edition)
- Two conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forwardPlease see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forward
- A spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forwardSketch a sign wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forwardSketch a sine wave depicting 3 seconds of wave activity for a 5 Hz tone.arrow_forward
- The drawing shows two long, straight wires that are suspended from the ceiling. The mass per unit length of each wire is 0.050 kg/m. Each of the four strings suspending the wires has a length of 1.2 m. When the wires carry identical currents in opposite directions, the angle between the strings holding the two wires is 20°. (a) Draw the free-body diagram showing the forces that act on the right wire with respect to the x axis. Account for each of the strings separately. (b) What is the current in each wire? 1.2 m 20° I -20° 1.2 marrow_forwardplease solve thisarrow_forwardplease solve everything in detailarrow_forward
- 6). What is the magnitude of the potential difference across the 20-02 resistor? 10 Ω 11 V - -Imm 20 Ω 10 Ω 5.00 10 Ω a. 3.2 V b. 7.8 V C. 11 V d. 5.0 V e. 8.6 Varrow_forward2). How much energy is stored in the 50-μF capacitor when Va - V₁ = 22V? 25 µF b 25 µF 50 µFarrow_forward9). A series RC circuit has a time constant of 1.0 s. The battery has a voltage of 50 V and the maximum current just after closing the switch is 500 mA. The capacitor is initially uncharged. What is the charge on the capacitor 2.0 s after the switch is closed? R 50 V a. 0.43 C b. 0 66 C c. 0.86 C d. 0.99 C Carrow_forward
- Foundations of Astronomy (MindTap Course List)PhysicsISBN:9781337399920Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAstronomyPhysicsISBN:9781938168284Author:Andrew Fraknoi; David Morrison; Sidney C. WolffPublisher:OpenStax
- Horizons: Exploring the Universe (MindTap Course ...PhysicsISBN:9781305960961Author:Michael A. Seeds, Dana BackmanPublisher:Cengage LearningAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning





