(A)
To find: The change in
(A)
Answer to Problem 1RE
The change in y is 16.
Explanation of Solution
Given:
The function y is
Definition used:
Increments:
“For
Calculation:
Consider the function
Compute the change in x or
From the given definition, it is known that
So the value of change in x is
Compute the change in y or
Compute
Therefore, the value of
Compute
Therefore, the value of
From the given definition, it is known that
Therefore, the change in y as x changes from 1 to 3 is 16.
(B)
To find: The average rate of change of y with respect to x when the value of x changes from 1 to 3.
(B)
Answer to Problem 1RE
The average rate of change of y with respect to x is 8.
Explanation of Solution
Definition used:
Average Rate of Change:
“For
Calculation:
From part (A), the value of
Compute the average rate of change by using the above mentioned definition.
Therefore, the average rate of change of y with respect to x when the value of x changes from 1 to 3 is 8.
(C)
To find: The slope of the secant line passing through the points
(C)
Answer to Problem 1RE
The slope of the secant line is 8.
Explanation of Solution
Result used:
“The slope of the secant line joining points
Calculation:
From part (A), the value of
Compute the slope of the secant line joining points
Therefore, the slope of the secant line passing through the points
(D)
To find: The instantaneous rate of change of y with respect to x when
(D)
Answer to Problem 1RE
The instantaneous rate of change of y is 4.
Explanation of Solution
Definition used:
Instantaneous rate of change:
“For
Calculation:
Obtain instantaneous rate of change at
That is,
Obtain
From part (A),
Substitute the value of
Therefore, the instantaneous rate of change of y with respect to x at
(E)
To find: The slope of the tangent line at
(E)
Answer to Problem 1RE
The slope of the tangent line is 4.
Explanation of Solution
Formula used:
Slope of the tangent line.
The slope of the tangent line at the point
Calculation:
From part (D), the instantaneous rate of change of y with respect to x at
That is, the value of the derivative of the function
So by the above mentioned definition, the slope of the tangent line is 4.
Therefore, the slope of the tangent line at
(F)
To find: The value of
(F)
Answer to Problem 1RE
The value of
Explanation of Solution
Theorem used:
Power rule:
“If
Also,
Sum and difference property:
“If
Also,
Constant Function rule:
“If
Also,
Calculation:
Compute the derivative of
Substitute
Therefore, the value of
Want to see more full solutions like this?
Chapter 9 Solutions
College Mathematics for Business, Economics, Life Sciences, and Social Sciences (14th Edition)
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education