
Concept explainers
Explain why or why not Determine whether the following statements are true and give an explanation or counterexample.
a. The differential equation y′ + 2y = t is first-order, linear, and separable.
b. The differential equation y′y = 2t2 is first-order, linear, and separable.
c. The function y = t + 1/t satisfies the initial value problem ty′ + y = 2t, y(1) = 2.
d. The direction field for the differential equation y′(t) = t + y(t) is plotted in the ty-plane.
e. Euler’s method gives the exact solution to the initial value problem y′ = ty2, y(0) = 3 on the interval [0, a] provided a is not too large.
a.

Whether the given statement is true or false.
Answer to Problem 1RE
The statement is False.
Explanation of Solution
The statement is the differential equation is first order, linear, and separable.
The given equation is
The order of this equation is one.
Thus, the equation is in first order.
The function y and its derivatives are in first order and not composed with other functions.
A linear equation cannot have products or quotients of y and its derivatives.
Thus, the equation is linear.
In the equation
But here the equation is not separable.
Therefore, the equation is in first order, linear but not separable.
Thus, the statement is false.
b.

Whether the given statement is true or false.
Answer to Problem 1RE
The statement is False.
Explanation of Solution
The given equation is
The order of this equation is one.
Thus, the equation is in first order.
Here, the function y and its derivatives are in first order and not composed with other functions.
A linear equation cannot have products or quotients of y and its derivatives.
Thus, the equation is not linear.
In the equation
But here the equation is separable.
Therefore, the equation is in first order, separable but not linear.
Thus, the statement is False.
c.

Whether the given statement is true or false.
Answer to Problem 1RE
The statement is true.
Explanation of Solution
The given differential equation is
The initial value problem is
Take derivative on both sides in
Substitute the value of
Therefore, the function
Thus, the statement is true.
d.

Whether the direction field for the differential equation
Answer to Problem 1RE
True, the direction field for the differential equation
Explanation of Solution
The differential equation is
The equation is in first order
So, the notation
The differential equation at each point
A direction field is a picture that shows the slope of the solution at
Therefore the direction field for the differential equation
e.

Whether the given statement is true or false.
Answer to Problem 1RE
The statement is false.
Explanation of Solution
The carry capacity either greater than or less than the value predicted by the model.
The given initial value problem is
Direction fields are the basis for many computer based methods for approximating solutions of a differential equation.
The exact solution of the initial value problem at grid points is
Which is generally unknown unless solve the original differential equation.
The goal is to compute a set of approximations to the exact solution at the grid points.
Therefore, the given assumption is false Euler method gives approximate solution not exact solution.
Thus, the statement is false.
Want to see more full solutions like this?
Chapter 9 Solutions
Calculus: Single Variable, Early Transcendentals and MyLab Math with Pearson eText -- Title-Specific Access Card Package (3rd Edition) (Briggs, Cochran, Gillett & Schulz, Calculus Series)
- ٣/١ B msl kd 180 Ka, Sin (1) I sin () sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 x 50 G 5005 1000 s = 1000-950 Copper bosses 5kW Rotor input 5 0.05 : loo kw 6) 1 /0001 ined sove in peaper I need a detailed solution on paper please وه اذا ميريد شرح الكتب فقط ١٥٠ DC 7) rotor a ' (y+xlny + xe*)dx + (xsiny + xlnx + dy = 0. Q1// Find the solution of: ( 357arrow_forward۳/۱ R₂ = X2 2) slots per pole per phase 3/31 B. 180 msl Kas Sin (I) 1sin() sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30): 0.866 4) Rotating 5) Synchronous speeds 120×50 looo G 1000-950 1000 Copper losses 5kw Rotor input 5 loo kw 0.05 6) 1 اذا ميريد شرح الكتب فقط look 7) rotor DC ined sove in peaper I need a detailed solution on paper please 0 64 Find the general solution of the following equations: QI//y(4)-16y= 0. Find the general solution of the following equations: Q2ll yll-4y/ +13y=esinx.arrow_forwardR₂ = X2 2) slots per pole per phase = 3/31 B-180 60 msl kd Kas Sin () 2 I sin (6) sin(30) Sin (30) اذا مريد شرح الكتب بس 0 بالفراغ 3 Cos (30) 0.866 4) Rotating ined sove in peaper 5) Synchronous speed s 120×50 6 s = 1000-950 1000 Copper losses 5kw Rotor input 5 0.05 6) 1 loo kw اذا ميريد شرح الكتب فقط Look 7) rotov DC I need a detailed solution on paper please 0 64 Solve the following equations: 0 Q1// Find the solution of: ( y • with y(0) = 1. dx x²+y²arrow_forward
- R₂ = X2 2) slots per pole per phase = 3/3 1 B-180-60 msl Ka Sin (1) Isin () sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed, 120 x 50 s = 1000-950 1000 Copper losses 5kw Rotor input 5 6) 1 0.05 G 50105 loo kw اذا ميريد شرح الكتب فقط look 7) rotov DC ined sove in peaper I need a detailed solution on paper please 064 2- A hot ball (D=15 cm ) is cooled by forced air T.-30°C, the rate of heat transfer from the ball is 460.86 W. Take for the air -0.025 Wim °C and Nu=144.89, find the ball surface temperature a) 300 °C 16 b) 327 °C c) 376 °C d) None か = 750 01arrow_forwardDon't do 14. Please solve 19arrow_forwardPlease solve 14 and 15arrow_forward
- 1. Consider the following system of equations: x13x2 + 4x3 - 5x4 = 7 -2x13x2 + x3 - 6x4 = 7 x16x213x3 - 21x4 = 28 a) Solve the system. Write your solution in parametric and vector form. b) What is a geometric description of the solution. 7 c) Is v = 7 in the span of the set S= [28. 1 HE 3 -5 3 ·6 ? If it is, write v 6 as a linear combination of the vectors in S. Justify. d) How many solutions are there to the associated homogeneous system for the system above? Justify. e) Let A be the coefficient matrix from the system above. Find the set of all solutions to Ax = 0. f) Is there a solution to Ax=b for all b in R³? Justify.arrow_forward4. Suppose that A is made up of 5 column vectors in R³, and suppose that the rank(A)=3. a. How many solutions are there to Ax=0? Justify. b. What is a geometric description for the nullspace(A)? Justify. c. Do the column vectors of A span R³? Justify. d. Is A invertible? Justify.arrow_forward3. Suppose that A is 5 x 5 and rank(A)=4. Use this information to answer the following. a. Give a geometric description of nullspace(A). Justify. b. Is A invertible? Justify. c. Give a geometric description of the span of the column vectors of A. What space are the column vectors of A in? Justify. d. What is determinant of A? Justify.arrow_forward
- 2. Consider the matrix: A || 1 1 -3 14 2 1 01 4 1 2 2 -26 1 -3 1 5] a) What is rank(A)? b) Is A invertible? Justify. c) Find the nullspace(A). Justify. d) Is the trivial solution the only solution to Ax=0? Justify. e) What is the span of the column vectors of A? Justify.arrow_forwardE 5. Suppose that S={v € R²: v = [2x² - 3]}. Is S a subspace of R²? Prove or disprovearrow_forward6. Suppose that V1, V2 ER", show that span{v1, v2} is a subspace of Rn.arrow_forward
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
