
Program plan:
- Import random.
- Define “main()” function.
- Call the function “printIntro()”.
- Get input using “getInputs()” function.
- Call function “simNMatches()” to find the matches.
- Call function “printSummary()”.
- Define a function “printIntro()”.
- Print the statements.
- Define a function “getInputs()”.
- Get the value for simulation parameter “a” from the user.
- Get the value for simulation parameter “b” from the user.
- Get the value for simulation parameter “n” from the user.
- Returns the three simulation parameters.
- Define a function “simNMatches()”.
- Initialize values.
- Iterate a for loop up to “n”.
- Call the function “simOneMatch()”.
- If condition.
- Increment the value of “matchA” by 1.
- Else.
- Increment the value of “matchB” by 1.
- Return the value of “matchA” and “matchB”.
- Define a function “simOneMatch()”.
- Initialize the values “wisnA” and “WinsB” as 0.
- Accumulate number of games.
- Iterate a while loop.
- Call a function “simOneGame()”.
- If condition.
- Increment the value of “winA” by 1.
- Increment the value of “x” by 1.
- Else condition.
- Increment the value of “winsB” by 1.
- Increment the value of “x” by 1.
- Return the value of “winsA” and “winsB”.
- Define a function “simOneGame()”.
- Call a function “findService()” to a value “serving”.
- Initialize values.
- Iterate a while loop.
- If condition “serving == "A"”.
- If condition “random() < probA”.
-
- Increment the value of “scoreA” by 1.
- If not the condition.
-
- Assign a value “B” to a variable “serving”.
- Else if condition.
-
- If condition “random() < probB” increment the value of “scoreB” by 1.
- Increment the value of “scoreB” by 1.
- If not the condition.
-
- assign a value “A” to a variable “serving”
- Return “scoreA”, “scoreB”..
- assign a value “A” to a variable “serving”
- If condition “serving == "A"”.
- Define a function “findService()”.
- If condition “x % 2 == 0”.
- Return “A”.
-
-
- If not the condition.
- Return “B”.
- If not the condition.
-
-
- Return “A”.
- If condition “x % 2 == 0”.
- Define a function “gameOver()”.
- If the condition satisfies.
- Return the value of “b”.
-
-
-
- Else if condition “b == 0 and a == 7”.
- Return the value of “a”.
- Else if condition “abs(a-b) >= 2”.
- Return “True”.
- If not the condition
- Return a value “False”.
- Else if condition “b == 0 and a == 7”.
-
-
-
- Return the value of “b”.
- If the condition satisfies.
- Define a function “printSummary()”.
- Add the value of “matchA” and “matchB” and store in a variable “n”.
- Print the value of “n”.
- Print the value of “matchA”.
- Print the value of “matchB”.
- main for function call

This is a revision of the racquetball simulation. The problem has two major changes:
The program has to calculate results for best of n games.
First service is alternated between A and B. The odd numbered games of the match are served first by A and even numbered games are first served by B.
Explanation of Solution
Program:
#import random
from random import random
#define main() function
def main():
#call the function printIntro()
printIntro()
#get input using getInputs() function
probA, probB, n = getInputs()
#calling function simNMatches() to find the matches
matchA, matchB = simNMatches(n, probA, probB)
#call function printSummary()
printSummary(matchA, matchB)
#define a function printIntro()
def printIntro():
print("This program simulates a game of racquetball between two")
print('players called "A" and "B". The abilities of each player is')
print("indicated by a probability (a number between 0 and 1) that")
print("reflects the likelihood of a player winning the serve.")
print("Player A has the first serve.")
#define a function getInputs()
def getInputs():
#get the value for simulation parameter ‘a’ from the user
a = eval(input("What is the prob. player A wins a serve? "))
#get the value for simulation parameter ‘b’ from the user
b = eval(input("What is the prob. player B wins a serve? "))
#get the value for simulation parameter ‘n’ from the user
n = eval(input("How many games to simulate? "))
#Returns the three simulation parameters
return a, b, n
#define a function simNMatches()
def simNMatches(n, probA, probB):
#initialize values
matchA = matchB = 0
#iterate a for loop up to n
for i in range(n):
#call the function simOneMatch()
winsA, winsB = simOneMatch(probA, probB)
#if condition
if winsA > winsB:
#increment the value of matchA by 1
matchA = matchA + 1
#else
else:
#increment the value of matchB by 1
matchB = matchB + 1
#return the value of matchA and matchB
return matchA, matchB
#define a function simOneMatch()
def simOneMatch(probA, probB):
#initialize the values wisnA and WinsB as 0
winsA = winsB = 0
#accumulate number of games
x = 1
#iterate a while loop
while winsA !=2 and winsB !=2:
#calling a function simOneGame()
scoreA, scoreB = simOneGame(probA, probB, x)
#if condition
if scoreA > scoreB:
#increment the value of winA by 1
winsA = winsA + 1
#increment the value of x by 1
x = x+1
#else condition
else:
#increment the value of winsB by 1
winsB = winsB + 1
#increment the value of x by 1.
x = x+1
#return the value of winsA and winsB
return winsA, winsB
#define a function simOneGame()
def simOneGame(probA, probB, x):
#call a function findService() to a value “serving”
serving = findService(x)
#initialize values
scoreA = 0
scoreB = 0
#iterate a while loop.
while not gameOver(scoreA, scoreB):
#if condition
if serving == "A":
#if condition
if random() < probA:
#increment the value of scoreA by 1
scoreA = scoreA + 1
#if not the condition
else:
#assign a value “B” to a variable “serving”
serving = "B"
#else if condition
elif serving == "B":
#if condition
if random() < probB:
#increment the value of scoreB by 1
scoreB = scoreB + 1
#if not the condition
else:
#assign a value “A” to a variable “serving”
serving = "A"
#return
return scoreA, scoreB
#define a function findService()
def findService(x):
#if condition
if x % 2 == 0:
#return “A”
return "A"
#if not the condition
else:
#return “B”
return "B"
#define a function gameOver()
def gameOver(a, b):
#if the condition satisfies
if a == 0 and b == 7:
#return the value of “b”
return b == 7
#else if condition
elif b == 0 and a == 7:
#return the value of a
return a == 7
#else if condition
elif abs(a-b) >= 2:
#return “True”
return True
#if not the condition
else:
#return a value “False”
return False
#define a function printSummary()
# Prints a summary of wins for each players
def printSummary(matchA, matchB):
#add the value of matchA and matchB and store in a variable n.
n = matchA + matchB
#print the value of n
print("\nGames simulated: ", n)
#print the value of matchA
print("Wins for A: {0} ({1:0.1%})".format(matchA, matchA/n))
#print the value of matchB
print("Wins for B: {0} ({1:0.1%})".format(matchB, matchB/n))
# main for function call
if __name__ == '__main__': main()
Output:
This program simulates a game of racquetball between two
players called "A" and "B". The abilities of each player is
indicated by a probability (a number between 0 and 1) that
reflects the likelihood of a player winning the serve.
Player A has the first serve.
What is the prob. player A wins a serve? 0.5
What is the prob. player B wins a serve? 0.7
How many games to simulate? 2
Games simulated: 2
Wins for A: 1 (50.0%)
Wins for B: 1 (50.0%)
Want to see more full solutions like this?
Chapter 9 Solutions
Python Programming: An Introduction to Computer Science
- Exercise 1 Function and Structure [30 pts] Please debug the following program and answer the following questions. There is a cycle in a linked list if some node in the list can be reached again by continuously following the next pointer. #include typedef struct node { int value; struct node *next; } node; int ll_has_cycle (node *first) if (first NULL) return 0; node *head = first%;B while (head->next != NULL) { } if (head first) { return 1; } head = head->next;B return 0; void test_11_has_cycle() { int i; node nodes [6] ; for (i = 0; i < 6; i++) { nodes [i] .next = NULL; nodes [i].value i; nodes [0] .next = &nodes [1]; nodes [1] .next = &nodes [2]; nodes [2] .next &nodes [3]; nodes [3] .next nodes [4] .next & nodes [4]; NULL; nodes [5] .next &nodes [0]; printf("1. Checking first list for cycles. \n Function 11_has_cycle says it has %s cycle\n\n", 11_has_cycle (&nodes[0])?"a":"no"); printf("2. Checking length-zero list for cycles. \n Function 11_has_cycle says it has %s cycle\n\n",…arrow_forwardHello, please solve this trying to follow this criteria. (use Keil) Abstract describing the requirements and goals of the assignment. List file with no errors or warnings. Brief description of your implementation design and code. Debugging screen shots for different scenarios with your reference and comments. Conclusionarrow_forwardWrite the following in C# WinForms. Implement a function in the main menu that makes the poacher move to random direction. The movement should seem seamless. The poacher can be drew by the following in the main menu. e.Graphics.DrawImage(poacherImage, poacher.X, poacherY, tileSize, tileSize); Create the appropriate poacher class as wellarrow_forward
- Write the following in C# WinForms. Implement a function in the main menu that makes the poacher move to random direction. The movement should seem seamless. The poacher can be drew by the following in the main menu. e.Graphics.DrawImage(poacherImage, poacher.X, poacherY, tileSize, tileSize);arrow_forwardWrite the following in C# WinForms. Implement a function in the main menu that makes the poacher move to random directions. The movement should seem seamless. The poacher can be drew by the following in the main menu. e.Graphics.DrawImage(poacherImage, poacher.X, poacherY, tileSize, tileSize);arrow_forwardWrite the following in C# WinForms. Create a poacher class that has random x and y values when created, private set function for x and y values. Implement a function in the main menu that makes the poacher move into random direction. The movement should seem seamless. The poacher can be drew by the following in the main menu. e.Graphics.DrawImage(poacherImage, poacher.X, poacherY, tileSize, tileSize); Write the following in C# WinForms. Create a poacher class that has random x and y values when created, private set function for x and y values. Implement a function in the main menu that makes the poacher move into random direction. The movement should seem seamless. The poacher can be drew by the following in the main menu. e.Graphics.DrawImage(poacherImage, poacher.X, poacherY, tileSize, tileSize);arrow_forward
- Write the following in C# WinForms. Create a poacher class that has random x and y values when created, private set function for x and y values. Implement a function in the main menu that makes the poacher move into random direction. The movement should seem seamless. The poacher can be drew by the following in the main menu. e.Graphics.DrawImage(poacherImage, poacher.X, poacherY, tileSize, tileSize);arrow_forwardWrite the following in C# WinForms. Create a poacher class that has random x and y values when created, private set function for x and y values. Implement a function in the main menu that makes the poacher move into random direction. The movement should seem seamless. The picture of the poacher is drew by e.Graphics.DrawImage(poacherImage, poacher.X, poacher.Y, tileSize, tileSize);arrow_forwardCreate a poacher class that has random x and y values when created, private set function for x and y values, and implement a function in the main menu that makes the poacher move into random direction. The movement should seem seamless. Write it in C# WinFormsarrow_forward
- Hi, please solve this trying to follow this criteria. (use Keil) Abstract describing the requirements and goals of the assignment. List file with no errors or warnings. Brief description of your implementation design and code. Debugging screen shots for different scenarios with your reference and comments. Conclusionarrow_forwardCan you solve using iterative expansionarrow_forwardusing r languagearrow_forward
- C++ for Engineers and ScientistsComputer ScienceISBN:9781133187844Author:Bronson, Gary J.Publisher:Course Technology PtrOperations Research : Applications and AlgorithmsComputer ScienceISBN:9780534380588Author:Wayne L. WinstonPublisher:Brooks ColeC++ Programming: From Problem Analysis to Program...Computer ScienceISBN:9781337102087Author:D. S. MalikPublisher:Cengage Learning
- EBK JAVA PROGRAMMINGComputer ScienceISBN:9781305480537Author:FARRELLPublisher:CENGAGE LEARNING - CONSIGNMENTProgramming Logic & Design ComprehensiveComputer ScienceISBN:9781337669405Author:FARRELLPublisher:Cengage



