Sustainable Energy, Si Edition
Sustainable Energy, Si Edition
1st Edition
ISBN: 9781133108771
Author: DUNLAP, Richard A.
Publisher: Cengage Learning
Question
100%
Book Icon
Chapter 9, Problem 1P
To determine

Find the time required to increase the oil temperature from 20°C to 100°C.

Expert Solution & Answer
Check Mark

Answer to Problem 1P

The time required to increase the oil temperature from 20°C to 100°C is 14.7sec¯.

Explanation of Solution

Given information:

The width of the parabolic trough l is 1.0m.

The insider diameter of the pipe d is 1cm.

Initial temperature T1 is 20°C  and the final temperature T2 is 100°C.

Calculation:

Take the mid day irradiance of incident radiation as 674W/m2 and incident power of the 1 m long parabolic trough P as 674 W.

The inside diameter of the pipe is 1 cm.

Find the volume of oil in a 1 m pipe section V.

V=π4d2×l=π41cm2×1m=π41cm×102m1cm2×1m=7.85×105m3

Take the density of oil ρ as 900kg/m3 and the value of specific heat C as 1,758J/kg°C.

Express the formula for energy Q as follows:

Q=mCΔT                                                                                                                   …... (1)

Here, the mass is m and the change in temperature is ΔT.

Write the expression for power P as follows:

P=QtQ=Pt

Here, t is the time required to raise the oil temperature.

The mass is the product of density and the volume. Therefore, m=ρV.

Substitute Pt for Q and ρV for m in equation (1).

Pt=ρVCΔTt=ρVCT2T1Pt=900kg/m3×7.85×105m3×1,758J/kg°C×100°C20°C674W

t=14.7sec

Therefore, the time required to raise the oil temperature is 14.7sec¯.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Methyl alcohol at 25°C (ρ = 789 kg/m³, μ = 5.6 × 10-4 kg/m∙s) flows through the system below at a rate of 0.015 m³/s. Fluid enters the suction line from reservoir 1 (left) through a sharp-edged inlet. The suction line is 10 cm commercial steel pipe, 15 m long. Flow passes through a pump with efficiency of 76%. Flow is discharged from the pump into a 5 cm line, through a fully open globe valve and a standard smooth threaded 90° elbow before reaching a long, straight discharge line. The discharge line is 5 cm commercial steel pipe, 200 m long. Flow then passes a second standard smooth threaded 90° elbow before discharging through a sharp-edged exit to reservoir 2 (right). Pipe lengths between the pump and valve, and connecting the second elbow to the exit are negligibly short compared to the suction and discharge lines. Volumes of reservoirs 1 and 2 are large compared to volumes extracted or supplied by the suction and discharge lines. Calculate the power that must be supplied to the…
can you help me figure out the calculations so that i can input into autocad?  Not apart of a graded assinment. Just a problem in class that i missed.
Use method of joints to determine forces in all members (all distances are in mm) Find the resultant force at the pin support and state its angle of inclination
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Residential Construction Academy: House Wiring (M...
Civil Engineering
ISBN:9781285852225
Author:Gregory W Fletcher
Publisher:Cengage Learning
Text book image
Materials Science And Engineering Properties
Civil Engineering
ISBN:9781111988609
Author:Charles Gilmore
Publisher:Cengage Learning
Text book image
Solid Waste Engineering
Civil Engineering
ISBN:9781305635203
Author:Worrell, William A.
Publisher:Cengage Learning,
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781133108689
Author:Richard A. Dunlap
Publisher:Cengage Learning