Concept explainers
(a)
To draw: The structure of each end of a linear DNA fragment produced by an EcoRI restriction digest.
Introduction:
EcoRI is a restriction endonuclease enzyme isolated from species E. coli. The restriction site of EcoRI consists of six palindromic
(a)
Explanation of Solution
Explanation:
Recognition sequence of EcoRI is GAATTC.
So, the fragments produced at both the ends are:
Ad
(b)
To draw: The structure resulting from the reaction of this end sequence with DNA polymerase I and the four deoxynucleoside triphosphates.
Introduction:
DNA polymerase I is an important enzyme used in the replication of DNA. It binds to specific sequence called initiator sequence. DNA polymerase I has multiple functions which include nick translation during DNA repairing, proofreading and DNA dependent DNA polymerase activity.
(b)
Explanation of Solution
Explanation:
The strands formed after DNA polymerase I activity are:
DNA polymerase enzyme adds the complementary nucleotide base pairs to the sequence, which makes the sticky end turn into blunt ends.
(c)
To draw: The sequence produced at the junction that arises if two ends with the structure derived in (b) are ligated.
Introduction:
Ligation is the process of joining two or more sequences with the help of an enzyme called DNA ligases. DNA ligase forms phosphodiester bonds between the nucleotides.
(c)
Explanation of Solution
Explanation:
The sequence obtained after ligation of the two ends is:
DNA ligase forms the phosphodiester bonds between two nucleotides which end up joining two DNA fragments.
(d)
To draw: The structure produced if the structure derived in (a) is treated with a nuclease that degrades only single stranded DNA.
Introduction:
Nuclease enzyme is important in breaking the phosphodiester bond between the nucleotide. There are two types of nuclease enzymes endonuclease and exonuclease. Exonuclease attacks the DNA from the terminals and endonuclease attacks the DNA from anywhere between the DNA.
(d)
Explanation of Solution
Explanation:
The sequence obtained after treatment with nuclease that degrades only single stranded DNA is:
And
Nuclease enzyme removed the nucleotide sequences present at the end turning the sticky ends into blunt ends.
(e)
To draw: The sequence of the junction produced if an end with structure (b) is ligated to an end with structure (d).
Introduction:
Ligation is the process of joining two or more sequences with the help of an enzyme called DNA ligases. DNA ligase forms phosphodiester bonds between the nucleotides.
(e)
Explanation of Solution
Explanation:
The resulting sequence obtained after ligation structure (b) with structure (d) is:
The ligase enzyme joined the ends of the two separate DNA fragments and formed a continuous sequence.
(f)
To draw: The structure of the end of a linear DNA fragment that was produced by a PvuII restriction digest.
Introduction:
PvuII restriction enzyme is isolated from a bacterium known as Proteus vulgaris. The recognition sequence of PvuII is made up of six nucleotide sequence and the ends produced are blunt ends
(f)
Explanation of Solution
Explanation:
The sequences obtained after digestion with restriction enzyme PvuII are:
PvuIIproduces blunt ends on digesting the DNA fragment and the recognition sequence for PvuII is 5ʹ CAGCTG 3ʹ PvuII is CAGCTG
(g)
To determine: The sequence of the junction produced if an end with structure (b) is ligated to an end with structure (f).
Introduction:
Ligation is the process of joining two or more sequences with the help of an enzyme called DNA ligases. This enzyme is important in repairing single stranded breaks in the DNA. DNA ligase forms phosphodiester bonds between the nucleotides.
(g)
Explanation of Solution
Explanation:
The resulting sequence obtained after ligation structure (b) with structure (f) is:
The ligase enzyme joined the ends of the two separate DNA fragments by catalyzing the formation of phosphodiester bonds between them.
(h)
To determine: A protocol for removing a EcoRI restriction site from DNA and incorporate BamHI restriction site at the same location.
Introduction:
BamHI restriction enzyme is isolated from a bacterium known as Bacillus amyloliquefaciens. BamHI is a type II restriction enzyme and the recognition sequence is made up of six nucleotide sequence and the ends produced are four nucleotide long sticky ends.
(h)
Explanation of Solution
Explanation:
First, the DNA is digested with EcoRI. It generates staggered ends these ends are treated with polymerase I enzyme and four nucleotide base pair. DNA polymerase binds the NTPs to the complementary sequence of the DNA, and converts sticky ends to blunt end.
After conversion of sticky ends produced by EcoRI into blunt ends the DNA fragment is ligated with a synthetic fragment which has recognition sequence for BamHI enzyme this will result into conversion of EcoRI restriction site into BamHI.
The sticky ends produced by restriction digestion can be converted to blunt ends by using polymerase enzyme and the four nucleotide tri phosphate containing solution. Similarly a restriction site can be added by ligation with the ligase enzyme and synthetic nucleotide sequence.
(i)
To design: Four different short synthetic double-stranded DNA fragments that would permit ligation of structure (a) with a DNA fragment produced by a PstI restriction digest.
Introduction:
EcoRI is a restriction endonuclease enzyme isolated from species E. coli. The restriction site of EcoRI consists of six palindromic nucleotide sequences and the restriction digestion produce sticky ends. PstI is a restriction endonuclease enzyme isolated from species Providencia stuartii. It is a type II restriction enzyme and produces sticky ends.
(i)
Explanation of Solution
Explanation:
The sequence in which the final junction contains the recognition sequences for both EcoRI and PstI is:
The sequence that contains only the EcoRI restriction segment is:
The sequence that contains the recognition site for only PstI is:
The sequence that has neither of the two recognition sites present is:
The recognition site for specific enzyme is specifically based on the nucleotide sequence. The enzyme binds to a specific nucleotide sequence present inside the DNA and cleaves it producing sticky or blunt ends.
Want to see more full solutions like this?
Chapter 9 Solutions
Lehninger Principles Of Biochemistry 7e & Study Guide And Solutions Manual For Lehninger Principles Of Biochemistry 7e
- Biochemistry Please help. Thank you When carbamyl phosphate is joined to L-ornathine, where does the energy for the reaction come from?arrow_forwardBiochemistry Question Please help. Thank you What is the function of glutamate dehydrogenase?arrow_forwardBiochemistry Question Please help. Thank you How and why does a high protein diet affect the enzymes of the urea cycle?arrow_forward
- Biochemistry What is the importance of the glucose-alanine cycle?arrow_forwardBiochemistry Assuming 2.5 molecules of ATP per oxidation of NADH/(H+) and 1.5molecules of ATP per oxidation of FADH2, how many ATP are produced per molecule of pyruvate? Please help. Thank youarrow_forward1. How would you explain the term ‘good food’? 2. How would you define Nutrition? 3. Nutrients are generally categorised into two forms. Discuss.arrow_forward
- Biochemistry Question. Please help solve. Thank you! Based upon knowledge of oxidation of bioorganic compounds and howmuch energy is released during their oxidation, rank the following, from most to least, with respect to how much energy would be produced from each during their oxidation. Explain your placement for each one.arrow_forwardBiochemistry Question.For the metabolism of amino acids what is the first step for theirbreakdown? Why is it necessary for this breakdown product to be transported to the liver? For the catabolism of the carbon backbone of these amino acids, there are 7 entry points into the “standard” metabolic pathways. List these 7 entry points and which amino acids are metabolized to these entry points. Please help. Thank you!arrow_forwardBiochemistry Question. Please help. Thank you. You are studying pyruvate utilization in mammals for ATP production under aerobic conditions and have synthesized pyruvate with Carbon #1 labelled with radioactive C14. After only one complete cycle of the TCA cycle, which of the TCA cycle intermediates would be labeled with C14? Explain your answer. Interestingly, you find C14 being excreted in the urine. How does it get there?arrow_forward
- Biochemistry question. Please help with. Thanks in advance For each of the enzymes listed below, explain what the enzyme does including function, names (or structures) of the substrate and products and the pathway(s) (if applicable) it is/are found in. (a) ATP synthetase (b) succinate dehydrogenase (c) isocitrate lyase (d) acetyl CoA carboxylase (e) isocitrate dehydrogenase (f) malate dehydrogenasearrow_forwardDraw and name each alcohol and classify it as primary, secondary, or tertiary. Explain your answer thoroughly.arrow_forwardDraw the product of each reaction. If there are multiple products, draw only the major product. Explain your answer thoroughly.arrow_forward
- BiochemistryBiochemistryISBN:9781319114671Author:Lubert Stryer, Jeremy M. Berg, John L. Tymoczko, Gregory J. Gatto Jr.Publisher:W. H. FreemanLehninger Principles of BiochemistryBiochemistryISBN:9781464126116Author:David L. Nelson, Michael M. CoxPublisher:W. H. FreemanFundamentals of Biochemistry: Life at the Molecul...BiochemistryISBN:9781118918401Author:Donald Voet, Judith G. Voet, Charlotte W. PrattPublisher:WILEY
- BiochemistryBiochemistryISBN:9781305961135Author:Mary K. Campbell, Shawn O. Farrell, Owen M. McDougalPublisher:Cengage LearningBiochemistryBiochemistryISBN:9781305577206Author:Reginald H. Garrett, Charles M. GrishamPublisher:Cengage LearningFundamentals of General, Organic, and Biological ...BiochemistryISBN:9780134015187Author:John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. PetersonPublisher:PEARSON