Concept explainers
The first-order differential equation and also when a function is the solution of such equation.
Explanation of Solution
A first-order differential equation is of the form
Since the equation involves only the first derivative
A function
The general solution always contains an arbitrary constant and it contains all the possible solutions.
Want to see more full solutions like this?
Chapter 9 Solutions
MyLab Math plus Pearson eText -- Standalone Access Card -- for Thomas' Calculus: Early Transcendentals (14th Edition)
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning