
MASTERING CHEMISTRY:THE CENTRAL SCIENCE
13th Edition
ISBN: 9781269712538
Author: Brown
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 9, Problem 1DE
Interpretation Introduction
To determine: The authenticity of the statement “The weaker a single bond in a molecule, the greater the chance it will be the site of a reaction (compare to stronger single bonds in the molecule).”
Expert Solution & Answer

Answer to Problem 1DE
Solution: The given statement is true.
Explanation of Solution
A molecule with weaker single bond is more reactive than a molecule with a stronger single bond because of less stability of the weaker single bond. Thus, it requires relatively less energy to break to react with other atoms or molecules. Similarly, large amount of energy is required to break a strong single bond and there is less chance of it to be the site of a reaction.
Conclusion
Thus, weaker a single bond in a molecule, the greater the chance it will be the site of a reaction.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Which of the given reactions would form meso product?
H₂O, H2SO4
III
m
CH3
CH₂ONa
CH3OH
||
H₂O, H2SO4
CH3
1. LiAlH4, THF
2. H₂O
CH3
IV
What is the major product of the following reaction?
O IV
III
HCI
D
=
III
ა
IV
The reaction of what nucleophile and substrate is represented by the following transition
state?
CH3
CH3O
-Br
อ
δ
CH3
Methanol with 2-bromopropane
Methanol with 1-bromopropane
Methoxide with 1-bromopropane
Methoxide with 2-bromopropane
Chapter 9 Solutions
MASTERING CHEMISTRY:THE CENTRAL SCIENCE
Ch. 9.2 - Prob. 9.1.1PECh. 9.2 - Prob. 9.1.2PECh. 9.2 - Prob. 9.2.1PECh. 9.2 - Prob. 9.2.2PECh. 9.2 - Prob. 9.3.1PECh. 9.2 - Prob. 9.3.2PECh. 9.3 - Prob. 9.4.1PECh. 9.3 - Prob. 9.4.2PECh. 9.5 - Prob. 9.5.1PECh. 9.5 - Prob. 9.5.2PE
Ch. 9.6 - Prob. 9.6.1PECh. 9.6 - Prob. 9.6.2PECh. 9.6 - Prob. 9.7.1PECh. 9.6 - Prob. 9.7.2PECh. 9.7 - Prob. 9.8.1PECh. 9.7 - Prob. 9.8.2PECh. 9.8 - Prob. 9.9.1PECh. 9.8 - Prob. 9.9.2PECh. 9 - Prob. 1DECh. 9 - Prob. 1ECh. 9 - Prob. 2ECh. 9 - Prob. 3ECh. 9 - Prob. 4ECh. 9 - Prob. 5ECh. 9 - Prob. 6ECh. 9 - Prob. 7ECh. 9 - Prob. 8ECh. 9 - Prob. 9ECh. 9 - Prob. 10ECh. 9 - Prob. 11ECh. 9 - Prob. 12ECh. 9 - Prob. 13ECh. 9 - Prob. 14ECh. 9 - Prob. 15ECh. 9 - Prob. 16ECh. 9 - Prob. 17ECh. 9 - Prob. 18ECh. 9 - Prob. 19ECh. 9 - Prob. 20ECh. 9 - Prob. 21ECh. 9 - Prob. 22ECh. 9 - Prob. 23ECh. 9 - Prob. 24ECh. 9 - Prob. 25ECh. 9 - Prob. 26ECh. 9 - Prob. 27ECh. 9 - Prob. 28ECh. 9 - Prob. 29ECh. 9 - Prob. 30ECh. 9 - Prob. 31ECh. 9 - Prob. 32ECh. 9 - Prob. 33ECh. 9 - Prob. 34ECh. 9 - Prob. 35ECh. 9 - Prob. 36ECh. 9 - Prob. 37ECh. 9 - Prob. 38ECh. 9 - Prob. 39ECh. 9 - Prob. 40ECh. 9 - Prob. 41ECh. 9 - Prob. 42ECh. 9 - Prob. 43ECh. 9 - Describe the intermediate that is thought to form...Ch. 9 - Prob. 45ECh. 9 - Prob. 46ECh. 9 - Prob. 47ECh. 9 - Prob. 48ECh. 9 - (a) Starting with the orbital diagram of a boron...Ch. 9 - Prob. 50ECh. 9 - Prob. 51ECh. 9 - Prob. 52ECh. 9 - Prob. 53ECh. 9 - Prob. 54ECh. 9 - Prob. 55ECh. 9 - Prob. 56ECh. 9 - Prob. 57ECh. 9 - Prob. 58ECh. 9 - Prob. 59ECh. 9 - Prob. 60ECh. 9 - Prob. 61ECh. 9 - Prob. 62ECh. 9 - Prob. 63ECh. 9 - Prob. 64ECh. 9 - In the formate ion, HCO2-, the carbon atom is the...Ch. 9 -
9.66 Consider the Lewis structure shown below....Ch. 9 - Prob. 67ECh. 9 - Prob. 68ECh. 9 - Prob. 69ECh. 9 - Prob. 70ECh. 9 - Prob. 71ECh. 9 - Prob. 72ECh. 9 - Prob. 73ECh. 9 - (a) What is the probability of finding an electron...Ch. 9 - Prob. 75ECh. 9 - Prob. 76ECh. 9 - Prob. 77ECh. 9 - Prob. 78ECh. 9 - Prob. 79ECh. 9 - Prob. 80ECh. 9 - Prob. 81ECh. 9 - Prob. 82ECh. 9 - Prob. 83ECh. 9 - Prob. 84ECh. 9 - Prob. 85AECh. 9 - Prob. 86AECh. 9 - Prob. 87AECh. 9 - Prob. 88AECh. 9 - Prob. 89AECh. 9 - Prob. 90AECh. 9 - Prob. 91AECh. 9 - Prob. 92AECh. 9 - Prob. 93AECh. 9 - Prob. 94AECh. 9 - Prob. 95AECh. 9 - Prob. 96AECh. 9 - Prob. 97AECh. 9 - Prob. 98AECh. 9 - A typical amino acid with one amino group and one...Ch. 9 - The azide ion, N3-, is linear with two N—N bonds...Ch. 9 - Prob. 101AECh. 9 - Prob. 102AECh. 9 - Prob. 103AECh. 9 - Prob. 104AECh. 9 - Prob. 105AECh. 9 - Prob. 106AECh. 9 - How many hydrogen atoms are in 2, 2-...Ch. 9 - Prob. 108AECh. 9 - Prob. 109AECh. 9 - Prob. 110AECh. 9 - Prob. 111AECh. 9 - Prob. 112AECh. 9 - Prob. 113IECh. 9 - Prob. 114IECh. 9 - Prob. 115IECh. 9 - Prob. 116IECh. 9 - Practice Exercise 2 Name the dipeptide and give...Ch. 9 - How many chiral carbon atoms are there in the...Ch. 9 - Prob. 119IECh. 9 - Prob. 120IECh. 9 - Prob. 121IECh. 9 - Prob. 122IE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What is the stepwise mechanism for this reaction?arrow_forward32. Consider a two-state system in which the low energy level is 300 J mol 1 and the higher energy level is 800 J mol 1, and the temperature is 300 K. Find the population of each level. Hint: Pay attention to your units. A. What is the partition function for this system? B. What are the populations of each level? Now instead, consider a system with energy levels of 0 J mol C. Now what is the partition function? D. And what are the populations of the two levels? E. Finally, repeat the second calculation at 500 K. and 500 J mol 1 at 300 K. F. What do you notice about the populations as you increase the temperature? At what temperature would you expect the states to have equal populations?arrow_forward30. We will derive the forms of the molecular partition functions for atoms and molecules shortly in class, but the partition function that describes the translational and rotational motion of a homonuclear diatomic molecule is given by Itrans (V,T) = = 2πmkBT h² V grot (T) 4π²IKBT h² Where h is Planck's constant and I is molecular moment of inertia. The overall partition function is qmolec Qtrans qrot. Find the energy, enthalpy, entropy, and Helmholtz free energy for the translational and rotational modes of 1 mole of oxygen molecules and 1 mole of iodine molecules at 50 K and at 300 K and with a volume of 1 m³. Here is some useful data: Moment of inertia: I2 I 7.46 x 10- 45 kg m² 2 O2 I 1.91 x 101 -46 kg m²arrow_forward
- K for each reaction step. Be sure to account for all bond-breaking and bond-making steps. HI HaC Drawing Arrows! H3C OCH3 H 4 59°F Mostly sunny H CH3 HO O CH3 'C' CH3 Select to Add Arrows CH3 1 L H&C. OCH3 H H H H Select to Add Arrows Q Search Problem 30 of 20 H. H3C + :0: H CH3 CH3 20 H2C Undo Reset Done DELLarrow_forwardDraw the principal organic product of the following reaction.arrow_forwardCurved arrows are used to illustrate the flow of electrons. Using the provided structures, draw the curved arrows that epict the mechanistic steps for the proton transfer between a hydronium ion and a pi bond. Draw any missing organic structures in the empty boxes. Be sure to account for all lone-pairs and charges as well as bond-breaking and bond-making steps. 2 56°F Mostly cloudy F1 Drawing Arrows > Q Search F2 F3 F4 ▷11 H. H : CI: H + Undo Reset Done DELLarrow_forward
- Calculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbons. Draw out the benzene ring structure when doing itarrow_forward1) Calculate the longest and shortest wavelengths in the Lyman and Paschen series. 2) Calculate the ionization energy of He* and L2+ ions in their ground states. 3) Calculate the kinetic energy of the electron emitted upon irradiation of a H-atom in ground state by a 50-nm radiation.arrow_forwardCalculate the ionization energy of He+ and Li²+ ions in their ground states. Thannnxxxxx sirrr Ahehehehehejh27278283-4;*; shebehebbw $+$;$-;$-28283773838 hahhehdvaarrow_forward
- Plleeaasseee solllveeee question 3 andd thankss sirr, don't solve it by AI plleeaasseee don't use AIarrow_forwardCalculate the chemical shifts in 13C and 1H NMR for 4-chloropropiophenone ? Write structure and label hydrogens and carbonsarrow_forwardPlease sirrr soollveee these parts pleaseeee and thank youuuuuarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistryChemistryISBN:9781259911156Author:Raymond Chang Dr., Jason Overby ProfessorPublisher:McGraw-Hill EducationPrinciples of Instrumental AnalysisChemistryISBN:9781305577213Author:Douglas A. Skoog, F. James Holler, Stanley R. CrouchPublisher:Cengage Learning
- Organic ChemistryChemistryISBN:9780078021558Author:Janice Gorzynski Smith Dr.Publisher:McGraw-Hill EducationChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningElementary Principles of Chemical Processes, Bind...ChemistryISBN:9781118431221Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. BullardPublisher:WILEY

Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning

Chemistry
Chemistry
ISBN:9781259911156
Author:Raymond Chang Dr., Jason Overby Professor
Publisher:McGraw-Hill Education

Principles of Instrumental Analysis
Chemistry
ISBN:9781305577213
Author:Douglas A. Skoog, F. James Holler, Stanley R. Crouch
Publisher:Cengage Learning

Organic Chemistry
Chemistry
ISBN:9780078021558
Author:Janice Gorzynski Smith Dr.
Publisher:McGraw-Hill Education

Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning

Elementary Principles of Chemical Processes, Bind...
Chemistry
ISBN:9781118431221
Author:Richard M. Felder, Ronald W. Rousseau, Lisa G. Bullard
Publisher:WILEY