Concept explainers
What can you say about the velocity of a moving body that in dynamic equilibrium? Draw a sketch of such a body using clearly labeled arrows to represent all external forces on the body.

The velocity of a moving body that is dynamic equilibrium and sketch a diagram of such a body.
Answer to Problem 1CQ
The velocity of a body in dynamic equilibrium is a constant, both in magnitude and direction.
Explanation of Solution
Introduction:
A body is said to be in equilibrium if the total force on the body is zero. On this basis, there are two kinds of equilibria- static equilibrium and dynamic equilibrium. According to Newton's first law, a body continues to be in the state of rest or in the state of uniform motion in a straight line, unless acted upon by an external unbalanced force. Further, Newton's second law implies that an unbalanced force produces an acceleration.
The sum of the forces acting on a body which is in dynamic equilibrium is zero. Therefore, the body experiences no acceleration. As a result, its velocity does not change. Thus, the body which is in dynamic equilibrium moves with a constant velocity.
Consider a block of weight W, acted upon by a force F. The block is placed on a horizontal surface. The surface exerts an upward force FNcalled the normal force on the block. A force of friction f acts between the surface and the block. The block moves towards the right with a velocity v.
The forces W and FNare equal and opposite. Thus, the sum of the forces along the vertical direction is zero. If the applied force F and the force of friction f have equal magnitudes but they are directed opposite to each other. Thus, the net force along the horizontal is also equal to zero. The sum of the forces acting on the block, being zero, the block is not accelerated. Thus, the velocity of the block remains constant. It continues to move with the same speed v and in the same direction.
A diagram representing the forces is shown below.
Conclusion:
A moving body under dynamic equilibrium moves with a constant velocity.
Want to see more full solutions like this?
Chapter 9 Solutions
COLLEGE PHYSICS
Additional Science Textbook Solutions
Biology: Life on Earth with Physiology (11th Edition)
Applications and Investigations in Earth Science (9th Edition)
Human Anatomy & Physiology (2nd Edition)
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Campbell Essential Biology (7th Edition)
College Physics: A Strategic Approach (3rd Edition)
- please help me solve this questions. show all calculations and a good graph too :)arrow_forwardWhat is the force (in N) on the 2.0 μC charge placed at the center of the square shown below? (Express your answer in vector form.) 5.0 με 4.0 με 2.0 με + 1.0 m 1.0 m -40 με 2.0 μCarrow_forwardWhat is the force (in N) on the 5.4 µC charge shown below? (Express your answer in vector form.) −3.1 µC5.4 µC9.2 µC6.4 µCarrow_forward
- An ideal gas in a sealed container starts out at a pressure of 8900 N/m2 and a volume of 5.7 m3. If the gas expands to a volume of 6.3 m3 while the pressure is held constant (still at 8900 N/m2), how much work is done by the gas? Give your answer as the number of Joules.arrow_forwardThe outside temperature is 25 °C. A heat engine operates in the environment (Tc = 25 °C) at 50% efficiency. How hot does it need to get the high temperature up to in Celsius?arrow_forwardGas is compressed in a cylinder creating 31 Joules of work on the gas during the isothermal process. How much heat flows from the gas into the cylinder in Joules?arrow_forward
- The heat engine gives 1100 Joules of energy of high temperature from the burning gasoline by exhausting 750 Joules to low-temperature . What is the efficiency of this heat engine in a percentage?arrow_forwardL₁ D₁ L₂ D2 Aluminum has a resistivity of p = 2.65 × 10 8 2. m. An aluminum wire is L = 2.00 m long and has a circular cross section that is not constant. The diameter of the wire is D₁ = 0.17 mm for a length of L₁ = 0.500 m and a diameter of D2 = 0.24 mm for the rest of the length. a) What is the resistance of this wire? R = Hint A potential difference of AV = 1.40 V is applied across the wire. b) What is the magnitude of the current density in the thin part of the wire? Hint J1 = c) What is the magnitude of the current density in the thick part of the wire? J₂ = d) What is the magnitude of the electric field in the thin part of the wire? E1 = Hint e) What is the magnitude of the electric field in the thick part of the wire? E2 =arrow_forwardplease helparrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





