What is natural convection? How does it differ from forced convection? What force causes natural convection currents?
The meaning of natural convection, the difference between the natural and forced convections and the force causing natural convection currents.
Explanation of Solution
Introduction:
There are three modes of heat transfer:
- Conduction
- Convection
- Radiation
The convection heat transfer is associated to heat transfer in fluids (liquid and gases) in which there is physical movement of fluid particles. On the basis offorce responsible for the physical movement of fluid particles, the convection is classified as natural and forced convection.
Natural Convection: The convection heat transfer process in which the bulk movement of fluid particles is observed due to density variations arising out of temperature difference is called the natural convection. The difference in temperature causes variation in different fluid layers, and this density variation facilitates movement of fluid particles without any aid of external force. There is no external force involved for the fluid motion.That is why it is referred as natural convection.
Forced Convection: When the movement of fluid particles is assisted by some external media such as fan, blower, pump, suction device, the heat transfer occurring in fluid is termed as forced convection. The forced convection results in better mixing and hence is faster and more efficient. The mild forces like buoyancy and gravity do not play any role in forced convection and the heat transfer process is dominated by the external force.
Forced convection caused by fan
The main difference between the natural and forced convection is the presence of external force. If the external force is present in heat transfer process, it is termed as forced convection, otherwise the convection heat transfer process is natural convection.
The force which play role in natural convection are buoyancy and gravity. The gravity becomes dominant in liquids which helps in producing the natural currents of heat transfer. The heated particles become less dense, they tend to move upward, and cold heavy particles move downward due to gravity, resulting in formation of natural currents. These natural currents are responsible for natural convection.
Want to see more full solutions like this?
Chapter 9 Solutions
HEAT+MASS TRANSFER:FUND.+APPL.
Additional Engineering Textbook Solutions
Starting Out with Python (4th Edition)
Experiencing MIS
SURVEY OF OPERATING SYSTEMS
Thermodynamics: An Engineering Approach
Automotive Technology: Principles, Diagnosis, And Service (6th Edition) (halderman Automotive Series)
Vector Mechanics for Engineers: Statics and Dynamics
- Can you solve it analytically using laplace transforms and with Matlab code as well please. Thank You.arrow_forwardQ11. Determine the magnitude of the reaction force at C. 1.5 m a) 4 KN D b) 6.5 kN c) 8 kN d) e) 11.3 KN 20 kN -1.5 m- C 4 kN -1.5 m B Mechanical engineering, No Chatgpt.arrow_forwardplease help with this practice problem(not a graded assignment, this is a practice exam), and please explain how to use sohcahtoaarrow_forward
- Solve this problem and show all of the workarrow_forwardSolve this problem and show all of the workarrow_forwardaversity of Baoyion aculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023, st Course, 1st Attempt Stage: 3rd Subject: Heat Transfer I Date: 2023\01\23- Monday Time: 3 Hours Q4: A thick slab of copper initially at a uniform temperature of 20°C is suddenly exposed to radiation at one surface such that the net heat flux is maintained at a constant value of 3×105 W/m². Using the explicit finite-difference techniques with a space increment of Ax = = 75 mm, determine the temperature at the irradiated surface and at an interior point that is 150 mm from the surface after 2 min have elapsed. Q5: (12.5 M) A) A steel bar 2.5 cm square and 7.5 cm long is initially at a temperature of 250°C. It is immersed in a tank of oil maintained at 30°C. The heat-transfer coefficient is 570 W/m². C. Calculate the temperature in the center of the bar after 3 min. B) Air at 90°C and atmospheric pressure flows over a horizontal flat plate at 60 m/s. The plate is 60 cm square and is maintained at a…arrow_forward
- University of Baby on Faculty of Engineering-AIMusyab Automobile Eng. Dep. Year: 2022-2023. 1 Course, 1" Attempt Stage 3 Subject Heat Transfer I Date: 2023 01 23- Monday Time: 3 Hours Notes: Q1: • • Answer four questions only Use Troles and Appendices A) A flat wall is exposed to an environmental temperature of 38°C. The wall is covered with a layer of insulation 2.5 cm thick whose thermal conductivity is 1.4 W/m. C, and the temperature of the wall on the inside of the insulation is 315°C. The wall loses heat to the environment by convection. Compute the value of the convection heat-transfer coefficient that must be maintained on the outer surface of the insulation to ensure that the outer-surface temperature does not exceed 41°C. B) A vertical square plate, 30 cm on a side, is maintained at 50°C and exposed to room air at 20°C. The surface emissivity is 0.8. Calculate the total heat lost by both sides of the plate. (12.5 M) Q2: An aluminum fin 1.5 mm thick is placed on a circular tube…arrow_forwardSolve using graphical method and analytical method, only expert should solvearrow_forwardSolve this and show all of the workarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY