Concept explainers
(a)
Interpretation:
The amount of product in given reaction should be calculated.
Concept Introduction:
A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction.
For example, the reaction between lead sulphide and oxygen is as follows:
Mass of any substance can be calculated as follows:
Number of moles can be calculated as follows;
Answer to Problem 18CR
There are
Explanation of Solution
The limiting reactant in a particular reaction has due to following properties:
- Limiting reactant completely reacted in a particular reaction.
- Limiting reactant determines the amount of the product in mole.
If any reactant left after competitions of reaction, thus it is said to excess reactant.
The balance chemical equation is as follows:
Given:
Amount of first reactant = 12.5 g
Calculation:
Number of moles of
Amount of product in gram calculated as follows:
(b)
Interpretation:
The amount of product in the given reaction should be calculated.
Concept Introduction:
A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction.
For example, the reaction between lead sulphide and oxygen is as follows:
Mass of any substance can be calculated as follows:
Number of moles can be calculated as follows;
Answer to Problem 18CR
There is
Explanation of Solution
The limiting reactant in a particular reaction has due to following properties:
- Limiting reactant completely reacted in a particular reaction.
- Limiting reactant determines the amount of the product in mole.
If any reactant left after competitions of reaction, thus it is said to excess reactant.
The balance chemical equation is as follows:
Given:
Amount of first reactant = 12.5 g
Calculation:
Number of moles of
Amount of product in gram calculated as follows:
(c)
Interpretation:
To calculate the amount of product in given reaction
Concept Introduction:
A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction.
For example, the reaction between lead sulphide and oxygen is as follows:
Mass of any substance can be calculated as follows:
Number of moles can be calculated as follows;
Answer to Problem 18CR
There are
Explanation of Solution
The limiting reactant in a particular reaction has due to following properties:
- Limiting reactant completely reacted in a particular reaction.
- Limiting reactant determines the amount of the product in mole.
If any reactant left after competitions of reaction, thus it is said to excess reactant.
The balance chemical equation is as follows:
Given:
Amount of first reactant = 12.5 g
Calculation:
Number of moles of
Amount of product in gram calculated as follows:
(d)
Interpretation:
The amount of product in given reaction should be calculated.
Concept Introduction:
A balanced chemical equation is an equation that contains same number of atoms as well as of each element of reactants and products of reaction.
For example, the reaction between lead sulphide and oxygen is as follows:
Mass of any substance can be calculated as follows:
Number of moles can be calculated as follows;
Answer to Problem 18CR
There are
Explanation of Solution
The limiting reactant in a particular reaction has due to following properties:
- Limiting reactant completely reacted in a particular reaction.
- Limiting reactant determines the amount of the product in mole.
If any reactant left after competitions of reaction, thus it is said to excess reactant.
The balance chemical equation is as follows:
Given Information:
Amount of first reactant = 12.5 g
Calculation:
Number of moles of
Amount of product in gram calculated as follows:
Want to see more full solutions like this?
Chapter 9 Solutions
Introductory Chemistry >IC<
- Bunsenite (NiO) crystallizes like common salt (NaCl), with a lattice parameter a = 4.177 Å. A sample of this mineral that has Schottky defects that are not supposed to decrease the volume of the material has a density of 6.67 g/cm3. What percentage of NiO molecules is missing? (Data: atomic weight of Ni: 58.7; atomic weight of O: 16).arrow_forwardA sample of aluminum (face-centered cubic - FCC) has a density of 2.695 mg/m3 and a lattice parameter of 4.04958 Å. Calculate the fraction of vacancies in the structure. (Atomic weight of aluminum: 26.981).arrow_forwardPlease correct answer and don't used hand raitingarrow_forward
- Please correct answer and don't used hand raitingarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardWhich of the following species is a valid resonance structure of A? Use curved arrows to show how A is converted to any valid resonance structure. When a compound is not a valid resonance structurc of A, explain why not. Provide steps and tips on what to look for to understand how to solve and apply to other problems.arrow_forward
- N IZ Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under the table. Molecule 1 Molecule 2 HN Molecule 3 Х HN www. Molecule 4 Molecule 5 Molecule 6 none of the above NH NH Garrow_forwardShow work with explanation. don't give Ai generated solutionarrow_forwardFollow the curved arrows to draw a second resonance structure for each species. Explain and steps for individual understanding.arrow_forward
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningIntroduction to General, Organic and BiochemistryChemistryISBN:9781285869759Author:Frederick A. Bettelheim, William H. Brown, Mary K. Campbell, Shawn O. Farrell, Omar TorresPublisher:Cengage Learning
- Introductory Chemistry: A FoundationChemistryISBN:9781285199030Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage Learning