
DeGarmo's Materials and Processes in Manufacturing
12th Edition
ISBN: 9781118987674
Author: J. T. Black, Ronald A. Kohser
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
Chapter 9, Problem 17RQ
To determine
The way in which the geometric requirement influence the method of fabrication.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
7.4 Impeller viscometer
The rheology of a Penicillium chrysogenum broth is examined using an impeller viscometer. The density of
the cell suspension is approximately 1000 kg m³. Samples of broth are stirred under laminar conditions
using a Rushton turbine of diameter 4 cm in a glass beaker of diameter 15 cm. The average shear rate
generated by the impeller is greater than the stirrer speed by a factor of about 10.2. When the stirrer shaft
is attached to a device for measuring torque and rotational speed, the following results are recorded.
Stirrer speed (s¹) Torque (Nm)
0.185
3.57 × 10-6
0.163
3.45 × 10-6
0.126
3.31 x 10-6
0.111
3.20×10-6
Can the rheology be described using a power-law model? If so, evaluate K and n.
(read image)
(read image) Answer Provided
Chapter 9 Solutions
DeGarmo's Materials and Processes in Manufacturing
Ch. 9 - What is the objective of a manufacturing...Ch. 9 - What are some undesirable features of...Ch. 9 - What problems are created by the availability of...Ch. 9 - In a manufacturing environment, why should the...Ch. 9 - How has the material balance shifted in the...Ch. 9 - How have different materials enabled advances and...Ch. 9 - Discuss the interrelation between engineering...Ch. 9 - What is design?Ch. 9 - What are the three primary stages of product...Ch. 9 - What are some of the features to be considered in...
Ch. 9 - What is the benefit of requiring prototype...Ch. 9 - What sequence of activities is common to nearly...Ch. 9 - Prob. 13RQCh. 9 - What is the most frequent pitfall when seeking to...Ch. 9 - What should be the first step in any materials...Ch. 9 - In what ways does the concept of shape or geometry...Ch. 9 - Prob. 17RQCh. 9 - Describe some of the possible mechanical...Ch. 9 - How might temperature enter into the specification...Ch. 9 - What are some physical properties of materials?Ch. 9 - What are some of the important aspects of the...Ch. 9 - What are some of the possible manufacturing...Ch. 9 - Why is it important to resist jumping to the...Ch. 9 - Prob. 24RQCh. 9 - What is the difference between an absolute and...Ch. 9 - Prob. 26RQCh. 9 - Prob. 27RQCh. 9 - Prob. 28RQCh. 9 - Give an example of a product or component where...Ch. 9 - What are some possible considerations relating to...Ch. 9 - Prob. 31RQCh. 9 - Prob. 32RQCh. 9 - Prob. 33RQCh. 9 - Prob. 34RQCh. 9 - Prob. 35RQCh. 9 - Why might material selection and process selection...Ch. 9 - Give an example of where selection of a material...Ch. 9 - Why is it likely that compromise, opinion, and...Ch. 9 - Why is it likely that multiple individuals will be...Ch. 9 - Why should the design and manufacture of a...Ch. 9 - Give an example where an unexpected problem might...Ch. 9 - Prob. 42RQCh. 9 - What are some of the different types of useful...Ch. 9 - How have high�speed, high�capacity computers...Ch. 9 - Prob. 1PCh. 9 - The chalk tray on a classroom chalkboard has very...Ch. 9 - Prob. 3PCh. 9 - Examine the properties of wood, aluminum, and...Ch. 9 - Automobile body panels have been made from carbon...Ch. 9 - Prob. 6PCh. 9 - Go to the local hardware or building supply store...Ch. 9 - Prob. 8PCh. 9 - Decorative fence posts for a residential home have...Ch. 9 - The individual turbine blades used in the exhaust...Ch. 9 - Prob. 11PCh. 9 - Hockey sticks are currently available in wood,...Ch. 9 - What is the normal use or uses of this product or...Ch. 9 - Prob. 2CSCh. 9 - Prob. 3CSCh. 9 - Prob. 4CSCh. 9 - Prob. 5CSCh. 9 - Prob. 6CSCh. 9 - Would there be any concerns relating to...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- This is part B Part A's question and answer was find moment of inertia (Ix = 3.90×10^5) and radius of gyration (kx = 21.861) Determine the centroid ( x & y ) of the I-section, Calculate the moment of inertia of the section about itscentroidal x & y axes. How or why is this result different fromthe result of a previous problem?arrow_forwardDetermine by direct integration the moment of inertia of theshaded area of figure with respect to the y axis shownarrow_forwardConsider the feedback controlled blending system shown below, which is designed to keep theoutlet concentration constant despite potential variations in the stream 1 composition. The density of all streamsis 920 kg/m3. At the nominal steady state, the flow rates of streams 1 and 2 are 950 and 425 kg/min,respectively, the liquid level in the tank is 1.3 m, the incoming mass fractions are x1 = 0.27, x2 = 0.54. Noticethe overflow line, indicating that the liquid level remains constant (i.e. any change in total inlet flow ratetranslates immediately to the same change in the outlet flow rate). You may assume the stream 1 flowrate andthe stream 2 composition are both constant. Use minutes as the time unit throughout this problem. Identify any controlled variable(s) (CVs), manipulated variable(s) (MVs),and disturbance variable(s) (DVs) in this problem. For each, explain how you know that’show it is classified.CVs: ___________, MVs: _____________, DVs: ______________ b) Draw a block diagram…arrow_forward
- A heat transfer experiment is conducted on two identical spheres which are initially at the same temperature. The spheres are cooled by placing them in a channel. The fluid velocity in the channel is non-uniform, having a profile as shown. Which sphere cools off more rapidly? Explain. V 1arrow_forwardMy ID# 016948724 last 2 ID# 24 Last 3 ID# 724 Please help to find the correct answer for this problem using my ID# first write le line of action and then help me to find the forces {fx= , fy= mz= and for the last find the moment of inertial about the show x and y axes please show how to solve step by steparrow_forwardMy ID# 016948724 last 2 ID# 24 Last 3 ID# 724 Please help to find the correct answer for this problem using my ID# first write le line of action and then help me to find the forces and the tension {fx= , fy= mz=arrow_forward
- My ID# 016948724 last 2 ID# 24 Last 3 ID# 724 Please help to find the correct answer for this problem using my ID# first write le line of action and then help me to find the forces {fx= , fy= mz=arrow_forwardmy ID is 016948724 Last 2 ID# 24 Last 3 ID# 724 please help me to solve this problem step by step show me how to solve first wirte the line actions and then find the forces {fx=, fy=, mz= and for the last step find the support reactions and find forcesarrow_forwardUppgift 1 (9p) 3 m 3 m 3 m 3 m H G F 3 m ↑ Dy D B AAY 30° 8 kN Ay Fackverket i figuren ovan är belastat med en punktlast. Bestäm normalkraften i stängerna BC, BG och FG.arrow_forward
- The cardiovascular countercurrent heat exchnager mechanism is to warm venous blood from 28 degrees C to 35 degrees C at a mass flow rate of 2 g/s. The artery inflow temp is 37 degrees C at a mass flow rate of 5 g/s. The average diameter of the vein is 5 cm and the overall heat transfer coefficient is 125 W/m^2*K. Determine the overall blood vessel length needed too warm the venous blood to 35 degrees C if the specific heat of both arterial and venous blood is constant and equal to 3475 J/kg*K.arrow_forwardThe forces Qy=12 kNQy=12kN and Qz=16 kNQz=16kN act on the profile at the shear center C. Calculate: a) Shear flow at point B (2 points)b) Shear stress at point D (3 points)arrow_forwardConsider the feedback controlled blending system shown below, which is designed to keep theoutlet concentration constant despite potential variations in the stream 1 composition. The density of all streamsis 920 kg/m3. At the nominal steady state, the flow rates of streams 1 and 2 are 950 and 425 kg/min,respectively, the liquid level in the tank is 1.3 m, the incoming mass fractions are x1 = 0.27, x2 = 0.54. Noticethe overflow line, indicating that the liquid level remains constant (i.e. any change in total inlet flow ratetranslates immediately to the same change in the outlet flow rate). You may assume the stream 1 flowrate andthe stream 2 composition are both constant. Use minutes as the time unit throughout this problem. d) Derive the first order process and disturbance transfer functions;Gp= Kp/(tou*s+1) and Gd=Kd/(tou*s+1) and calculate and list the values and units of the parameters. e) Using the given information, write the general forms of Gm, GIP, and Gv below(in terms of…arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Welding: Principles and Applications (MindTap Cou...Mechanical EngineeringISBN:9781305494695Author:Larry JeffusPublisher:Cengage Learning

Welding: Principles and Applications (MindTap Cou...
Mechanical Engineering
ISBN:9781305494695
Author:Larry Jeffus
Publisher:Cengage Learning
Basic Fabrication Techniques; Author: Weld.com;https://www.youtube.com/watch?v=3OW7iRnC8Ck;License: Standard Youtube License