
Find maximum positive shear and bending moment at point B due to the series of four moving concentrated loads

Explanation of Solution
Calculation:
Apply a 1 k unit moving load at a distance of x from left end A.
Sketch the free body diagram of beam as shown in Figure 1.
Refer Figure 1.
Find the equation of support reaction
Take moment about point C.
Consider moment equilibrium at point C.
Consider clockwise moment as positive and anticlockwise moment as negative.
Sum of moment at point C is zero.
Find the equation of support reaction
Apply vertical equilibrium equation of forces.
Consider upward force as positive
Substitute
Influence line for shear at B.
Find the equation of shear force at B of portion AB
Sketch the free body diagram of the section AB as shown in Figure 2.
Refer Figure 2.
Apply equilibrium equation of forces.
Consider upward force as positive
Substitute
Find the equation of shear force at B of portion BC
Sketch the free body diagram of the section BC as shown in Figure 3.
Refer Figure 3.
Apply equilibrium equation of forces.
Consider upward force as positive
Substitute
Thus, the equations of the influence line for
Find the value of influence line ordinate of shear force at various points of x using the Equations (3) and (4) and summarize the value as in Table 1.
x | |
0 | 1 |
30 | 0 |
Draw the influence lines for the shear force at point B using Table 1 as shown in Figure 4.
Refer Figure 4.
Find the slope
Here,
Substitute 15 ft for
Find the slope
Here,
Substitute 15 ft for
Sketch the loading position as shown in Figure 5.
Find the maximum positive shear force at B.
Sketch the loading position on the beam when the load 1 placed at just right of B as shown in Figure 6.
Refer Figure 6.
Find the shear force at B when the load 1 placed at just right of B.
Substitute 15 ft for
Sketch the loading position on the beam when the load 2 placed at just right of B as shown in Figure 7.
Refer Figure 7.
Find the shear force at B when the load 2 placed at just right of B.
Substitute 15 ft for
Sketch the loading position on the beam when the load 3 placed at just right of B as shown in Figure 8.
Refer Figure 8.
Find the shear force at B when the load 3 placed at just right of B.
Substitute 15 ft for
Sketch the loading position on the beam when the load 4 placed at just right of B as shown in Figure 9.
Refer Figure 9.
Find the shear force at B when the load 3 placed at just right of B.
Substitute 15 ft for
Maximum positive shear force at B as follows.
The maximum positive shear at B is the maximum of
Therefore, the maximum positive shear at point B is
Influence line for moment at B.
Refer Figure 2.
Consider clockwise moment as positive and anticlockwise moment as negative.
Find the equation of moment at B of portion AB
Substitute
Refer Figure 3.
Consider clockwise moment as negative and anticlockwise moment as positive.
Find the equation of moment at B of portion BC
Substitute
Thus, the equations of the influence line for
Find the value of influence line ordinate of moment at various points of x using the Equations (5) and (6) and summarize the value as in Table 2.
x | |
0 | 0 |
30 | 0 |
Draw the influence lines for the moment at point B using Table 2 as shown in Figure 10.
Refer Figure 9.
The slope of portion AB and BC is same.
Find the slope
Here,
Substitute 15 ft for
Find the maximum positive bending moment at B.
Refer Figure 6.
Find the bending moment at B when the load 1 placed at just right of B.
Substitute 15 ft for
Refer Figure 7.
Find the bending moment at B when the load 2 placed at just right of B.
Substitute 15 ft for
Refer Figure 8.
Find the bending moment at B when the load 3 placed at just right of B.
Substitute 15 ft for
Refer Figure 9.
Find the bending moment at B when the load 1 placed at just right of B.
Substitute 15 ft for
Maximum positive bending moment at B as follows.
The maximum positive bending moment at B is the maximum of
Therefore, the maximum positive bending moment at point B is
Want to see more full solutions like this?
Chapter 9 Solutions
Structural Analysis, Si Edition (mindtap Course List)
- I am doing an assignment regarding building diagnosis. Please provide answer, explanation and useful links for learning purposes.arrow_forwardThree transportation projects have been proposed to increase the safety in and around a residential neighborhood. Each project consists of upgrading existing street signing to highly retroreflective sheeting to increase visibility. The following table shows the initial construction costs, annual operating costs, useful life of the sheeting, and salvage values for each alternative. Annual Operations and Maintenance Initial Construction Alternative Cost ($) 1 16,000 2 3 7,500 18,000 Costs ($) 2,000 3,750 2,000 Useful Life (years) Salvage Value ($) 10 5 10 6,000 850 7,300 Assume that the discount rate is 10 percent. Calculate the present worth (in dollars) for each alternative. (Assume for Alternative 2 that new sheeting must be purchased at the end of the first five years, and that all operations and maintenance costs are due at the end of each year.) PW1 PW 2 = $25967 Your response differs from the correct answer by more than 10%. Double check your calculations. = $21185.5 x PW 3 = $…arrow_forwardAverage demand on a rural roadway ranges from zero to 700 veh/day when the cost per trip goes from $1.50 to zero. (a) Calculate the net user benefits per year (in dollars) if the cost decreases from $1.00 to $0.50/trip (assume a linear demand function). Enter a number. (b) Compare the value calculated in (a) with the benefits as calculated in typical highway studies. (Enter the benefits in dollars as calculated in typical highway studies.) $arrow_forward
- help me with this Question for revision purpose and as well with references The office building was built in year 2017 and has not obtained any Green Mark certification before. The office building is occupied by a single tenant/entity. The building management team had done an analysis of the building’s energy performance by extracting the data from the various systems. The current performance and findings of the systems are listed in Appendix A. The client is considering to have the building undergo retrofitting to improve the building’s energy performance. The objective is to achieve Green Mark Gold Plus under the new Green Mark 2021 framework. For part (a) below, you are to use Pathway 1: EUI for this. (a) As part of the feasibility exercise, you are to interpret the current performance of the existing building based on the data available (Refer to Appendix A). You should then organise and present to the client how does the current building relate to the Energy Efficiency Section of…arrow_forwardhelp me with this Question for revision purpose and as well with references The office building was built in year 2017 and has not obtained any Green Mark certification before. The office building is occupied by a single tenant/entity. The building management team had done an analysis of the building’s energy performance by extracting the data from the various systems. The current performance and findings of the systems are listed in Appendix A. The client is considering to have the building undergo retrofitting to improve the building’s energy performance. The objective is to achieve Green Mark Gold Plus under the new Green Mark 2021 framework. For part (a) below, you are to use Pathway 1: EUI for this. (a) As part of the feasibility exercise, you are to interpret the current performance of the existing building based on the data available (Refer to Appendix A). You should then organise and present to the client how does the current building relate to the Energy Efficiency Section of…arrow_forwardWhat are the advantages and disadvanages of using a bar chart in construction scheduling?arrow_forward
- 1- Determine the area of the region enclosed by y = t sin(t), the x- axis, y-axis and x = Π 元-3arrow_forwardI am doing an assignment regarding building diagnosis. Provide answer, links and citations for learning purposes.arrow_forward2- Using n = a. TE 6 approximate the value of √3t7 sin(+4) dt using: Simpson's Rule.arrow_forward
