
University Physics Volume 1
18th Edition
ISBN: 9781938168277
Author: William Moebs, Samuel J. Ling, Jeff Sanny
Publisher: OpenStax - Rice University
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 9, Problem 105AP
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
The figure below shows, at left, a solid disk of radius R = 0.600 m and mass 75.0 kg.
Tu
Mounted directly to it and coaxial with it is a pulley with a much smaller mass and a radius of r = 0.230 m. The disk and pulley assembly are on a frictionless axle. A belt is wrapped around the pulley and connected to an electric motor as shown on the right. The turning motor gives the disk
and pulley a clockwise angular acceleration of 1.67 rad/s². The tension T in the upper (taut) segment of the belt is 145 N.
(a) What is the tension (in N) in the lower (slack) segment of the belt?
N
(b) What If? You replace the belt with a different one (one slightly longer and looser, but still tight enough that it does not sag). You again turn on the motor so that the disk accelerates clockwise. The upper segment of the belt once again has a tension of 145 N, but now the tension in
the lower belt is exactly zero. What is the magnitude of the angular acceleration (in rad/s²)?
rad/s²
A bridge truss extends x = 217 m across a river (shown in the figure below) where 0 = 40°. The structure is free to slide horizontally to permit thermal expansion. The structural components are connected by pin joints, and the masses of the bars are small compared with the mass of a
1300 kg car at the center. Calculate the force of tension or compression in each structural component (in N).
B
D
T
T
T
T
T
22820
AB
AC
BC
||| || || ||
BD
N ---Select---
N ---Select---
N ---Select---
N ---Select---
DE
N ---Select---
T
DC=
N ---Select---
TEC
N ---Select---
с
✓
E
no ai please
Chapter 9 Solutions
University Physics Volume 1
Ch. 9 - Check Your Understanding The U.S. Air Force uses...Ch. 9 - Check Your Understanding What if we had assumed...Ch. 9 - Check Your Understanding Suppose the second,...Ch. 9 - Check Your Understanding Would the ball’s change...Ch. 9 - Check Your Understanding Even if there were some...Ch. 9 - Check Your Understanding The changes of momentum...Ch. 9 - Check Your Understanding There is a second...Ch. 9 - Check Your Understanding Suppose there had been no...Ch. 9 - Check Your Understanding Suppose the initial...Ch. 9 - Check Your Understanding Notice that the mass of...
Ch. 9 - Check Your Understanding Suppose we included the...Ch. 9 - Check Your Understanding Suppose you have a...Ch. 9 - Check Your Understanding How would the firework...Ch. 9 - Check Your Understanding What is the physical...Ch. 9 - An object that has a small mass and an object that...Ch. 9 - An object that has a small mass and an object that...Ch. 9 - Is it possible for a small force to produce a...Ch. 9 - Why is a 10-m fall onto concrete far more...Ch. 9 - What external force is responsible for changing...Ch. 9 - A piece of putty and a tennis ball with the same...Ch. 9 - Under what circumstances is momentum conserved?Ch. 9 - Can momentum be conserved for a system if there...Ch. 9 - Explain in terms of momentum and Newton’s laws how...Ch. 9 - Can objects in a system have momentum while the...Ch. 9 - A sprinter accelerates out of the starting blocks....Ch. 9 - A rocket in deep space (zero gravity) accelerates...Ch. 9 - Two objects of equal mass are moving with equal...Ch. 9 - Describe a system for which momentum is conserved...Ch. 9 - Momentum for a system can be conserved in one...Ch. 9 - Suppose a fireworks shell explodes, breaking into...Ch. 9 - It is possible for the velocity of a rocket to be...Ch. 9 - An elephant and a hunter are having a...Ch. 9 - A skater of mass 40 kg is carrying a box of mass 5...Ch. 9 - A car of mass 2000 kg is moving with a constant...Ch. 9 - The mass of Earth is 5.971024kg and its orbital...Ch. 9 - If a rainstorm drops 1 cm of rain over an area of...Ch. 9 - What is the average momentum of an avalanche that...Ch. 9 - What is the average momentum of a 70.0-kg sprinter...Ch. 9 - A 75.0-kg person is riding in a car moving at 20.0...Ch. 9 - One hazard of space travel is debris left by...Ch. 9 - A cruise ship with a mass of 1.00107kg strikes a...Ch. 9 - Calculate the final speed of a 110-kg rugby player...Ch. 9 - Water from a fire hose is directed horizontally...Ch. 9 - A 0.450-kg hammer is moving horizontally at 7.00...Ch. 9 - Prob. 31PCh. 9 - The x-component of a force on a 46-g golf ball by...Ch. 9 - A hockey puck of mass 150 g is sliding due east on...Ch. 9 - A ball of mass 250 g is thrown with an initial...Ch. 9 - Prob. 35PCh. 9 - Two identical pucks collide elastically on an air...Ch. 9 - The figure below shows a bullet of mass 200 g...Ch. 9 - A 20-kg child is coasting at 3.3 m/s over flat...Ch. 9 - A 4.5 kg puffer fish expands to 40 of its mass by...Ch. 9 - Explain why a cannon recoils when it fires a...Ch. 9 - Two figure skaters are coasting in the same...Ch. 9 - A 2000-kg railway freight car coasts at 4.4 m/s...Ch. 9 - A 5.50-kg bowling ball moving at 9.00 m/s collides...Ch. 9 - Ernest Rutherford (the first New Zealander to be...Ch. 9 - A 90.0-kg ice hockey player hits a 0.150-kg puck,...Ch. 9 - A 100-g firecracker is launched vertically into...Ch. 9 - In an elastic collision, a 400-kg bumper car...Ch. 9 - Repeat the preceding problem if the mass of the...Ch. 9 - An alpha particle (4He) undergoes an elastic...Ch. 9 - You are standing on a very slippery icy surface...Ch. 9 - A 35-kg child rides a relatively massless sled...Ch. 9 - A boy sleds down a hill and onto a frictionless...Ch. 9 - Prob. 53PCh. 9 - A billiard ball, labeled 1, moving horizontally...Ch. 9 - A projectile of mass 2.0 kg is fired in the air at...Ch. 9 - Two asteroids collide and stick together. The...Ch. 9 - Prob. 57PCh. 9 - A proton traveling at 3.0106m/s scatters...Ch. 9 - Prob. 59PCh. 9 - A family is skating. The father (75 kg) skates at...Ch. 9 - Prob. 61PCh. 9 - Two cars of the same mass approach an extremely...Ch. 9 - Three point masses are placed at the corners of a...Ch. 9 - Two particles of masses m1 and m2 separated by a...Ch. 9 - Two particles of masses m1 and m2 separated by a...Ch. 9 - Two particles of masses m1 and m2 , move uniformly...Ch. 9 - Two particles of masses m1 and m2 move uniformly...Ch. 9 - Find the center of mass of a one-meter long rod,...Ch. 9 - Find the center of mass of a rod of length L whose...Ch. 9 - Find the center of mass of a rectangular block of...Ch. 9 - Find the center of mass of a rectangular material...Ch. 9 - A cube of side a is cut out of another cube of...Ch. 9 - Find the center of mass of a cone of uniform...Ch. 9 - Find the center of mass of a thin wire of mass in...Ch. 9 - Find the center of mass of a uniform thin...Ch. 9 - Find the center of mass of a sphere of mass M and...Ch. 9 - (a) A 5.00-kg squid initially at rest ejects 0.250...Ch. 9 - A rocket takes off from Earth and reaches a speed...Ch. 9 - Repeat the preceding problem but for a rocket that...Ch. 9 - How much fuel would be needed for a 1000-kg rocket...Ch. 9 - What exhaust speed is required to accelerate a...Ch. 9 - Unreasonable Results Squids have been reported to...Ch. 9 - Two 70-kg canoers paddle in a single, 50-kg canoe....Ch. 9 - Which has a larger magnitude of momentum: a...Ch. 9 - A driver applies the brakes and reduces the speed...Ch. 9 - You friend claims that momentum is mass multiplied...Ch. 9 - Dropping a glass on a cement floor is more likely...Ch. 9 - Your 1500-kg sports car accelerates from 0 to 30...Ch. 9 - A ball of mass m is dropped. What is the formula...Ch. 9 - Repeat the preceding problem, but including a drag...Ch. 9 - A 5.0-g egg falls from a 90-cm-high counter onto...Ch. 9 - A car crashes into a large tree that does not...Ch. 9 - Two hockey players approach each other head on,...Ch. 9 - You are coasting on your 10-kg bicycle at 15 m/s...Ch. 9 - A load of gravel is dumped straight down into a...Ch. 9 - Two carts on a straight track collide head on. The...Ch. 9 - A 100-kg astronaut finds himself separated from...Ch. 9 - Derive the equations giving the final speeds for...Ch. 9 - Repeat the preceding problem for the case when the...Ch. 9 - A child sleds down a hill and collides at 5.6 m/s...Ch. 9 - For the preceding problem, find the final speed of...Ch. 9 - A 90-kg football player jumps vertically into the...Ch. 9 - Three skydivers are plummeting earthward. They are...Ch. 9 - Two billiard balls are at rest and touching each...Ch. 9 - Prob. 105APCh. 9 - Prob. 106APCh. 9 - Repeat the preceding problem if the balls collide...Ch. 9 - Repeat the preceding problem if the balls collide...Ch. 9 - Where is the center of mass of a semicircular wire...Ch. 9 - Where is the center of mass of a slice of pizza...Ch. 9 - If 1 of the Earth’s mass were transferred to the...Ch. 9 - You friend wonders how a rocket continues to climb...Ch. 9 - To increase the acceleration of a rocket, should...Ch. 9 - A 65-kg person jumps from the first floor window...Ch. 9 - Two projectiles of mass m1 and m2 , are fired at...Ch. 9 - Two identical objects (such as billiard balls)...Ch. 9 - A ramp of mass M is at rest on a horizontal...Ch. 9 - Find the center of mass of the structure given in...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Match each of the following items with all the terms it applies to:
Human Physiology: An Integrated Approach (8th Edition)
Distinguish between the concepts of sexual differentiation and sex determination.
Concepts of Genetics (12th Edition)
Which substance is a pure compound? a. Gold b. Water c. Milk d. Fruit cake
Introductory Chemistry (6th Edition)
WH AT IF? Suppose two plant populations exchange pollen and seeds. In one population, individuals of geno-type...
Campbell Biology (11th Edition)
Explain how the behavior of homologous chromosomes in meiosis parallels Mendels law of segregation for autosoma...
Genetic Analysis: An Integrated Approach (3rd Edition)
10.71 Identify each of the following as an acid or a base: (10.1)
H2SO4
RbOH
Ca(OH)2
HI
...
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Knowledge Booster
Similar questions
- A block of mass m₁ = 1.85 kg and a block of mass m₂ is 0.360 for both blocks. 5.90 kg are connected by a massless string over a pulley in the shape of a solid disk having a mass of M = 10.0 kg. The fixed, wedge-shaped ramp makes an angle of 0 = 30.0° as shown in the figure. The coefficient of kinetic friction m M, R m2 Ꮎ (a) Determine the acceleration of the two blocks. (Enter the magnitude of the acceleration.) m/s2 (b) Determine the tensions in the string on both sides of the pulley. left of the pulley right of the pulley N Narrow_forwardConsider as a system the Sun with Venus in a circular orbit around it. Find the magnitude of the change in the velocity of the Sun relative to the center of mass of the system during the time Venus completes half an orbit. Assume the mass of the Sun is 5.68 x 1029 kg, the mass of Venus is 4.87 × 1024 kg, its period is 1.94 × 107 s, and the radius of its orbit is 1.08 × 1011 m. Ignore the influence of other celestial objects. m/sarrow_forwardYour physics instructor loves to put on physics magic shows for elementary school children. He is working on a new trick and has asked you, his star physics student, for assistance. The figure below shows the apparatus he is designing. Cup Hinged end - Support stick A small ball rests on a support so that the center of the ball is at the same height as the upper lip of a cup of negligible mass that is attached to a uniform board of length = 1.89 m. When the support stick is snatched away, the ball will fall and the board will rotate around the hinged end. As the board hits the table, your instructor wants the ball to fall into the cup. The larger the angle 0, the more time the elementary school children will have to watch the progress of the trick. But if the angle is too large, the cup may not pull ahead of the ball. For example, in the limiting case of 90°, the board would not fall at all! (a) Your instructor wishes to know the minimum angle 0 (in degrees) at which the support would…arrow_forward
- no ai pleasearrow_forward= Consider the schematic of the molecule shown, with two hydrogen atoms, H, bonded to an oxygen atom, O. The angle between the two bonds is 106°. If the bond length r 0.106 nm long, locate the center of mass of the molecule. The mass mH of the hydrogen atom is 1.008 u, and the mass mo of the oxygen atom is 15.9999 u. (Use a coordinate system centered in the oxygen atom, with the x-axis to the right and the y-axis upward. Give the coordinates of the center of mass in nm.) XCM YOM = = H 53° 53° nm nm r Harrow_forwardAn approximate model for a ceiling fan consists of a cylindrical disk with four thin rods extending from the disk's center, as in the figure below. The disk has mass 2.60 kg and radius 0.200 m. Each rod has mass 0.850 kg and is 0.700 m long. HINT (a) Find the ceiling fan's moment of inertia about a vertical axis through the disk's center. (Enter your answer in kg • m².) kg. m² (b) Friction exerts a constant torque of magnitude 0.113 N m on the fan as it rotates. Find the magnitude of the constant torque provided by the fan's motor if the fan starts from rest and takes 15.0 s and 17.5 full revolutions to reach its maximum speed. (Enter your answer in N. m.) N.marrow_forward
- A uniform, thin rod hangs vertically at rest from a frictionless axle attached to its top end. The rod has a mass of 0.780 kg and a length of 1.54 m. (Assume a coordinate system where the +y-direction is up and the +x-direction is to the right. The rod is free to swing about the axle in the x- y plane.) (a) You take a hammer and strike the bottom end of the rod. At the instant the hammer strikes, the force it applies to the rod is (15.71) N. What is the acceleration (in m/s²) of the rod's center of mass at this instant? (Express your answer in vector form.) m/s² a = (b) What is the horizontal force (in N) that the axle exerts on the rod at this same instant? (Express your answer in vector form.) F = N (c) The rod then returns to hanging at rest. You again strike the rod with the hammer, applying the same force, but now you strike it at its midpoint. What now is the acceleration of the center of mass (in m/s²) at the instant of impact? (Express your answer in vector form.) m/s² a = (d)…arrow_forwardFind the net torque on the wheel in the figure below about the axle through O perpendicular to the page, taking a = 9.00 cm and b = 23.0 cm. (Indicate the direction with the sign of your answer. Assume that the positive direction is counterclockwise.) N.m 10.0 N 30.0% 12.0 N 9.00 Narrow_forwardAn automobile tire is shown in the figure below. The tire is made of rubber with a uniform density of 1.10 × 103 kg/m³. The tire can be modeled as consisting of two flat sidewalls and a tread region. Each of the sidewalls has an inner radius of 16.5 cm and an outer radius of 30.5 cm as shown, and a uniform thickness of 0.600 cm. The tread region can be approximated as having a uniform thickness of 2.50 cm (that is, its inner radius is 30.5 cm and outer radius is 33.0 cm as shown) and a width of 19.2 cm. What is the moment of inertia (in kg. m²) of the tire about an axis perpendicular to the page through its center? 33.0 cm 16.5 cm Sidewall Ο 30.5 cm Tread i Enter a number. Find the moment of inertia of the sidewall and the moment of inertia of the tread region. Each can be modeled as a cylinder of nonzero thickness. What is the inner and outer radius for each case? What is the formula for the moment of inertia for a thick-walled cylinder? How can you find the mass of a hollow cylinder?…arrow_forward
- You have just bought a new bicycle. On your first riding trip, it seems that the bike comes to rest relatively quickly after you stop pedaling and let the bicycle coast on flat ground. You call the bicycle shop from which you purchased the vehicle and describe the problem. The technician says that they will replace the bearings in the wheels or do whatever else is necessary if you can prove that the frictional torque in the axle of the wheels is worse than -0.02 N . m. At first, you are discouraged by the technical sound of what you have been told and by the absence of any tool to measure torque in your garage. But then you remember that you are taking a physics class! You take your bike into the garage, turn it upside down and start spinning the wheel while you think about how to determine the frictional torque. The driveway outside the garage had a small puddle, so you notice that droplets of water are flying off the edge of one point on the tire tangentially, including drops that…arrow_forward2nd drop down is "up" or "down"arrow_forwardRomeo (79.0 kg) entertains Juliet (57.0 kg) by playing his guitar from the rear of their boat at rest in still water, 2.70 m away from Juliet, who is in the front of the boat. After the serenade, Juliet carefully moves to the rear of the boat (away from shore) to plant a kiss on Romeo's cheek. (a) How far (in m) does the 81.0 kg boat move toward the shore it is facing? m (b) What If? If the lovers both walk toward each other and meet at the center of the boat, how far (in m) and in what direction does the boat now move? magnitude m direction ---Select---arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON

Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley

College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON