USING + UNDERSTANDING MATH CUSTOM
6th Edition
ISBN: 9780137721023
Author: Bennett
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.A, Problem 32E
To determine
Two examples of Linear growth or decay.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
In this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0
given (under the measure P) by
d.St 0.03 St dt + 0.2 St dwt,
with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to
price an option on this stock (which we name cubic put). This option is European-type, with
maturity 3 months (i.e. T = 0.25 years), and payoff given by
F = (8-5)+
(a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure
Q. (You don't need to prove it, simply give the answer.)
(b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2.
(c) Let X =
S. Find the Stochastic Differential Equation satisfied by the process (Xt)
under the measure Q.
(d) Find an explicit expression for X₁ = S3 under measure Q.
(e) Using the results above, find the price of the cubic put option mentioned above.
(f) Is the price in (e) the same as in question (b)? (Explain why.)
Problem 4. Margrabe formula and the Greeks (20 pts)
In the homework, we determined the Margrabe formula for the price of an option allowing you to
swap an x-stock for a y-stock at time T. For stocks with initial values xo, yo, common volatility
σ and correlation p, the formula was given by
Fo=yo (d+)-x0Þ(d_),
where
In (±²
Ꭲ
d+
õ√T
and
σ = σ√√√2(1 - p).
дго
(a) We want to determine a "Greek" for ỡ on the option: find a formula for
θα
(b) Is
дго
θα
positive or negative?
(c) We consider a situation in which the correlation p between the two stocks increases: what
can you say about the price Fo?
(d) Assume that yo< xo and p = 1. What is the price of the option?
The Course Name Real Analysis please Solve questions by Real Analysis
Chapter 8 Solutions
USING + UNDERSTANDING MATH CUSTOM
Ch. 8.A - Prob. 1QQCh. 8.A - Prob. 2QQCh. 8.A - The balance owed your credit card doubles from...Ch. 8.A - The number Of songs in your iPod has increased...Ch. 8.A - Which of the following is in example of...Ch. 8.A - On a chessboard with 64 squares, you place 1 penny...Ch. 8.A - At 11:00 you place a single bacterium in a bottle,...Ch. 8.A - Consider the bacterial population described in...Ch. 8.A - Consider the bacterial population described in...Ch. 8.A - Which of the following is not true of any...
Ch. 8.A - Describe basic differences between linear growth...Ch. 8.A - 2. Briefly explain how repeated doublings...Ch. 8.A - Briefly summarize the Story Of the bacteria in the...Ch. 8.A - Explain the meaning Of the two key facts about...Ch. 8.A - Prob. 5ECh. 8.A - Suppose you had a magic hank account in which your...Ch. 8.A - A small town that grows exponentially can become a...Ch. 8.A - H. Human population has been growing exponentially...Ch. 8.A - Prob. 9ECh. 8.A - Prob. 10ECh. 8.A - Prob. 11ECh. 8.A - Prob. 12ECh. 8.A - Prob. 13ECh. 8.A - Prob. 14ECh. 8.A - Linear or Exponential? State whether the growth...Ch. 8.A - Prob. 16ECh. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Chessboard Parable. Use the chessboard parable...Ch. 8.A - Prob. 20ECh. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Prob. 22ECh. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Magic Penny Parable. Use the magic penny parable...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - Bacteria in a Bottle Parable. Use the bacteria...Ch. 8.A - 29. Human Doubling. Human population in the year...Ch. 8.A - Doubling Time versus Initial Amount. a. Would you...Ch. 8.A - Facebook Users. The table shows the number of...Ch. 8.A - Prob. 32ECh. 8.A - Exponential Growth. Identify at least two news...Ch. 8.A - Prob. 34ECh. 8.A - Prob. 35ECh. 8.B - Prob. 1QQCh. 8.B - Prob. 2QQCh. 8.B - Which of the following is not a good approximation...Ch. 8.B - Prob. 4QQCh. 8.B - Radioactive tritium (hvdrogen-3) has a halt-life...Ch. 8.B - Radioactive uramum-235 has a hall-life of about...Ch. 8.B - Prob. 7QQCh. 8.B - log10108= a.100,000,000 b. 108 c.8Ch. 8.B - A rural popular ion decreases at a rate of 20% per...Ch. 8.B - Prob. 10QQCh. 8.B - What is a doubling tune? Suppose a population has...Ch. 8.B - Prob. 2ECh. 8.B - State the approximate doubting time formula and...Ch. 8.B - Prob. 4ECh. 8.B - Prob. 5ECh. 8.B - 6. State the approximate hall-life formula and the...Ch. 8.B - 7. Briefly describe exact doubling time and...Ch. 8.B - 8. Give an example in which it is important to use...Ch. 8.B - Our town is growing with a doubling time of 25...Ch. 8.B - Our town is growing at a rate of 7% per year, so...Ch. 8.B - A toxic chemical decays with a hall-life of 10...Ch. 8.B - The hall-life of plutomum-239 is about 24,000...Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Prob. 15ECh. 8.B - Prob. 16ECh. 8.B - 13-24: Logarithms. Refer to the Brief Review on p....Ch. 8.B - Prob. 18ECh. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - 13-24: Logarithms. Refer to the Brief Review on p....Ch. 8.B - Prob. 22ECh. 8.B - Prob. 23ECh. 8.B - Logarithms. Refer to the Brief Review on p. 488....Ch. 8.B - Prob. 25ECh. 8.B - Prob. 26ECh. 8.B - Prob. 27ECh. 8.B - Prob. 28ECh. 8.B - Prob. 29ECh. 8.B - Prob. 30ECh. 8.B - Prob. 31ECh. 8.B - Prob. 32ECh. 8.B - Prob. 33ECh. 8.B - Prob. 34ECh. 8.B - 31. Rabbits. A community of rabbits begins with an...Ch. 8.B - Prob. 36ECh. 8.B - Doubling Time Formula. Use the approximate...Ch. 8.B - Prob. 38ECh. 8.B - Prob. 39ECh. 8.B - Prob. 40ECh. 8.B - Prob. 41ECh. 8.B - Prob. 42ECh. 8.B - Prob. 43ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 45ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 47ECh. 8.B - 41 -48: Half-Life. Each exercise gives a half-life...Ch. 8.B - Prob. 49ECh. 8.B - 49-52: Half-Life Formula. Use the approximate...Ch. 8.B - Prob. 51ECh. 8.B - 49-52: Half-Life Formula. Use the approximate...Ch. 8.B - Prob. 53ECh. 8.B - Exact Formulas. Compare the doubling times found...Ch. 8.B - Prob. 55ECh. 8.B - Exact Formulas. Compare the doubling times found...Ch. 8.B - Prob. 57ECh. 8.B - 58. Nuclear Weapons. Thermonuclear weapons use...Ch. 8.B - Fossil Fuel Emissions. Total emissions of carbon...Ch. 8.B - Yucca Mountain. The U.S. government spent nearly...Ch. 8.B - Crime Rate. The homicide rate decreases at a rate...Ch. 8.B - 62. Drug Metabolism. A particular antibiotic is...Ch. 8.B - Atmospheric Pressure. The pressure of Earth's...Ch. 8.B - Prob. 64ECh. 8.B - 65. Radioactive Half-Life. Find a news story that...Ch. 8.B - Prob. 66ECh. 8.B - Prob. 67ECh. 8.B - Prob. 68ECh. 8.B - Prob. 69ECh. 8.C - Prob. 1QQCh. 8.C - Prob. 2QQCh. 8.C - The primary reason for the rapid growth of human...Ch. 8.C - The carrying capacity of the Earth is defined as...Ch. 8.C - Which of the billowing would cause estimates of...Ch. 8.C - 6. Recall the bacteria in a bottle example from...Ch. 8.C - When researchers project that human population...Ch. 8.C - Prob. 8QQCh. 8.C - Prob. 9QQCh. 8.C - Prob. 10QQCh. 8.C - Based on Figure 8.3, contrast the changes in human...Ch. 8.C - Prob. 2ECh. 8.C - Haw do today’s birth and death rates compare to...Ch. 8.C - Prob. 4ECh. 8.C - Prob. 5ECh. 8.C - What is overshot and collapse? Under what...Ch. 8.C - Prob. 7ECh. 8.C - 8. If birth rates fall more than death rates, the...Ch. 8.C - The carrying capacity of our planet depends only...Ch. 8.C - to rapid increases in computing technology, we...Ch. 8.C - In the wild, we always expect the population of...Ch. 8.C - Prob. 12ECh. 8.C - Prob. 13ECh. 8.C - Varying Growth Rates. Starting from a 2013...Ch. 8.C - Prob. 15ECh. 8.C - 13-16: Varying Growth Rates. Starting from a 2013...Ch. 8.C - Birth and Death Rates. The following table gives...Ch. 8.C - Prob. 18ECh. 8.C - Prob. 19ECh. 8.C - Prob. 20ECh. 8.C - 21. Logistic Growth. Consider a population that...Ch. 8.C - Logistic Growth. Consider a population that begins...Ch. 8.C - Prob. 23ECh. 8.C - Prob. 24ECh. 8.C - Prob. 25ECh. 8.C - Prob. 26ECh. 8.C - Prob. 27ECh. 8.C - Prob. 28ECh. 8.C - Prob. 29ECh. 8.C - Prob. 30ECh. 8.C - Prob. 31ECh. 8.C - Prob. 32ECh. 8.C - Prob. 33ECh. 8.C - Prob. 34.0ECh. 8.C - Prob. 34.1ECh. 8.C - Population Predictions. Find population...Ch. 8.C - Prob. 36ECh. 8.C - Prob. 37ECh. 8.C - Prob. 38ECh. 8.C - Prob. 39ECh. 8.D - The energy release of a magnitude 7 earthquake is...Ch. 8.D - Prob. 2QQCh. 8.D - 3. What is a 0-decibel sound?
the softest sound...Ch. 8.D - Prob. 4QQCh. 8.D - Prob. 5QQCh. 8.D - Prob. 6QQCh. 8.D - Prob. 7QQCh. 8.D - Prob. 8QQCh. 8.D - Prob. 9QQCh. 8.D - Prob. 10QQCh. 8.D - What is the magnitude scale for earthquakes? What...Ch. 8.D - What is the decibel scale? Describe how it is...Ch. 8.D - What is pH? What pH values define an acid, a base,...Ch. 8.D - What is acid rain? Why is it a serious...Ch. 8.D - 5. An earthquake of magnitude 8 will do twice as...Ch. 8.D - A 120-dB wand is 20% louder than a 100-dB sound.Ch. 8.D - If I double the amount of water in the cup, I'll...Ch. 8.D - The lake water was crystal clear, so It could not...Ch. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - Prob. 10ECh. 8.D - Prob. 11ECh. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - Earthquake Magnitudes. Use the earthquake...Ch. 8.D - 9-14: Earthquake Magnitudes. Use the earthquake...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - The Decibel Scale. Use the decibel scale to answer...Ch. 8.D - Prob. 20ECh. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - Prob. 22ECh. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - Inverse Square Law. Use the inverse square law for...Ch. 8.D - The pH scale. Use the pH scale to answer the...Ch. 8.D - The pH Scale. Use the pH scale to answer the...Ch. 8.D - Prob. 27ECh. 8.D - Prob. 28ECh. 8.D - Prob. 29ECh. 8.D - Prob. 30ECh. 8.D - The pH Scale. Use the pH scale to answer the...Ch. 8.D - 25-32: The pH Scale. Use the pH scale to answer...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - 33-38: Logarithmic Thinking. Briefly describe, in...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - Logarithmic Thinking. Briefly describe, in words,...Ch. 8.D - Prob. 37ECh. 8.D - Prob. 38ECh. 8.D - 39. Sound and Distance.
The decibel level for...Ch. 8.D - 40. Variation in Sound with Distance. Suppose that...Ch. 8.D - Toxic Dumping in Acidified Lakes. Consider a...Ch. 8.D - Earthquakes in the News. Find a recent news story...Ch. 8.D - Prob. 43ECh. 8.D - Disasters. Find the death lolls for some of the...Ch. 8.D - Prob. 45E
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- We consider a 4-dimensional stock price model given (under P) by dẴ₁ = µ· Xt dt + йt · ΣdŴt where (W) is an n-dimensional Brownian motion, π = (0.02, 0.01, -0.02, 0.05), 0.2 0 0 0 0.3 0.4 0 0 Σ= -0.1 -4a За 0 0.2 0.4 -0.1 0.2) and a E R. We assume that ☑0 = (1, 1, 1, 1) and that the interest rate on the market is r = 0.02. (a) Give a condition on a that would make stock #3 be the one with largest volatility. (b) Find the diversification coefficient for this portfolio as a function of a. (c) Determine the maximum diversification coefficient d that you could reach by varying the value of a? 2arrow_forwardQuestion 1. Your manager asks you to explain why the Black-Scholes model may be inappro- priate for pricing options in practice. Give one reason that would substantiate this claim? Question 2. We consider stock #1 and stock #2 in the model of Problem 2. Your manager asks you to pick only one of them to invest in based on the model provided. Which one do you choose and why ? Question 3. Let (St) to be an asset modeled by the Black-Scholes SDE. Let Ft be the price at time t of a European put with maturity T and strike price K. Then, the discounted option price process (ert Ft) t20 is a martingale. True or False? (Explain your answer.) Question 4. You are considering pricing an American put option using a Black-Scholes model for the underlying stock. An explicit formula for the price doesn't exist. In just a few words (no more than 2 sentences), explain how you would proceed to price it. Question 5. We model a short rate with a Ho-Lee model drt = ln(1+t) dt +2dWt. Then the interest rate…arrow_forwardIn this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)arrow_forward
- 3. Consider the polynomial equation 6-iz+7z² - iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forwardThe managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c. Question content area bottom Part 1 a. Develop a simple linear regression model between billable hours and overhead costs. Overhead Costsequals=212495.2212495.2plus+left parenthesis 42.4857 right parenthesis42.485742.4857times×Billable Hours (Round the constant to one decimal place as needed. Round the coefficient to four decimal places as needed. Do not include the $ symbol in your answers.) Part 2 b. Interpret the coefficients of your regression model. Specifically, what does the fixed component of the model mean to the consulting firm? Interpret the fixed term, b 0b0, if appropriate. Choose the correct answer below. A. The value of b 0b0 is the predicted billable hours for an overhead cost of 0 dollars. B. It is not appropriate to interpret b 0b0, because its value…arrow_forward3. Consider the polynomial equation 6-iz+7z2-iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forward
- Write the equation of the trigonometric function shown in the graph. LO 5 4 3 2 1 y -5 -5 4 8 8 500 -1 -2 -3 -4 -5 x 5 15л 5л 25л 15л 35π 5л 4 8 2 8 4 8arrow_forwardc) Using only Laplace transforms solve the following Samuelson model given below i.e., the second order difference equation (where yt is national income): - Yt+2 6yt+1+5y₁ = 0, if y₁ = 0 for t < 0, and y₁ = 0, y₁ = 1 1-e-s You may use without proof that L-1[s(1-re-s)] = f(t) = r² for n ≤tarrow_forward5. 156 m/WXY = 59° 63 E 7. B E 101 C mFE = 6. 68° 8. C 17arrow_forwardScoring: MATH 15 FILING /10 COMPARISON /10 RULER I 13 Express EMPLOYMENT PROFESSIONALS NAME: SKILLS EVALUATION TEST- Light Industrial MATH-Solve the following problems. (Feel free to use a calculator.) DATE: 1. If you were asked to load 225 boxes onto a truck, and the boxes are crated, with each crate containing nine boxes, how many crates would you need to load? 2. Imagine you live only one mile from work and you decide to walk. If you walk four miles per hour, how long will it take you to walk one mile? 3. Add 3 feet 6 inches + 8 feet 2 inches + 4 inches + 2 feet 5 inches. 4. In a grocery store, steak costs $3.85 per pound. If you buy a three-pound steak and pay for it with a $20 bill, how much change will you get? 5. Add 8 minutes 32 seconds + 37 minutes 18 seconds + 15 seconds. FILING - In the space provided, write the number of the file cabinet where the company should be filed. Example: File Cabinet #4 Elson Co. File Cabinets: 1. Aa-Bb 3. Cg-Dz 5. Ga-Hz 7. La-Md 9. Na-Oz 2. Bc-Cf…arrow_forwardpart 3 of the question is: A power outage occurs 6 min after the ride started. Passengers must wait for their cage to be manually cranked into the lowest position in order to exit the ride. Sine function model: where h is the height of the last passenger above the ground measured in feet and t is the time of operation of the ride in minutes. What is the height of the last passenger at the moment of the power outage? Verify your answer by evaluating the sine function model. Will the last passenger to board the ride need to wait in order to exit the ride? Explain.arrow_forwardIf you were asked to load 225 boxes onto a truck, and the boxes are crated, with each crate containing nine boxes, how many crates would you need to load?arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License