
To Determine the population at the end of second year.

Answer to Problem 1QQ
Solution:
The change from in one year is (110,000-100,000) = 10000.
So again in next year the population will increase by 10000
So population at the end of year 2 will be
Population at end of year 1 + constant change
110,000 + 10000 = 120,000
This makes option (b) as correct answer.
Explanation of Solution
Given Info:
A town’s population increases in one year from 100,000 to 110,000.Population is growing linearly, at steady constant rate.
First we need to understand what liner growth is. When the things increases by same constant amount at each step or at each time interval so it will be called as linear growth.
For example.
If on Monday you started with 10 friends on face book, on Tuesday you have 14 friends, then on Wednesday you have 18 friends, then on Thursday you have 22 friends. So this will be called as linear growth.
On the same way in our question also they used the word linear growth. That means population will change by same constant amount.
Let us see what that constant amount is.
The difference = 110,000 – 100,000 = 10000
Because the starting population is 100,000 and population at the end of year 1 is 110,000 so that makes the difference of 10000.
Now when again the population will increase by 10000 so it will become 110,000+10000 = 120,000.
Formula used:
We did not use any formula we just used the definition of linear growth. Linear growth means change by same constant amount at each time interval.
Calculation:
The constant difference = 110,000 – 100,000 = 10000
Population at end of year 1 + constant change
110,000 + 10000 = 120,000
Conclusion:
Whenever the growth is linear that means the change will be same constant amount at each time interval.
Want to see more full solutions like this?
Chapter 8 Solutions
USING+UNDERSTAND MATH W/MATHLABPLUS >I
- A chemical reaction involving the interaction of two substances A and B to form a new compound X is called a second order reaction. In such cases it is observed that the rate of reaction (or the rate at which the new compound is formed) is proportional to the product of the remaining amounts of the two original substances. If a molecule of A and a molecule of B combine to form a molecule of X (i.e., the reaction equation is A + B ⮕ X), then the differential equation describing this specific reaction can be expressed as: dx/dt = k(a-x)(b-x) where k is a positive constant, a and b are the initial concentrations of the reactants A and B, respectively, and x(t) is the concentration of the new compound at any time t. Assuming that no amount of compound X is present at the start, obtain a relationship for x(t). What happens when t ⮕∞?arrow_forwardConsider a body of mass m dropped from rest at t = 0. The body falls under the influence of gravity, and the air resistance FD opposing the motion is assumed to be proportional to the square of the velocity, so that FD = kV2. Call x the vertical distance and take the positive direction of the x-axis downward, with origin at the initial position of the body. Obtain relationships for the velocity and position of the body as a function of time t.arrow_forwardAssuming that the rate of change of the price P of a certain commodity is proportional to the difference between demand D and supply S at any time t, the differential equations describing the price fluctuations with respect to time can be expressed as: dP/dt = k(D - s) where k is the proportionality constant whose value depends on the specific commodity. Solve the above differential equation by expressing supply and demand as simply linear functions of price in the form S = aP - b and D = e - fParrow_forward
- Find the area of the surface obtained by rotating the circle x² + y² = r² about the line y = r.arrow_forward3) Recall that the power set of a set A is the set of all subsets of A: PA = {S: SC A}. Prove the following proposition. АСВ РАСРВarrow_forwardA sequence X = (xn) is said to be a contractive sequence if there is a constant 0 < C < 1 so that for all n = N. - |Xn+1 − xn| ≤ C|Xn — Xn−1| -arrow_forward
- 3) Find the surface area of z -1≤ y ≤1 = 1 + x + y + x2 over the rectangle −2 ≤ x ≤ 1 and - Solution: TYPE YOUR SOLUTION HERE! ALSO: Generate a plot of the surface in Mathematica and include that plot in your solution!arrow_forward7. Walkabout. Does this graph have an Euler circuit? If so, find one. If not, explain why not.arrow_forwardBelow, let A, B, and C be sets. 1) Prove (AUB) nC = (ANC) U (BNC).arrow_forward
- Q1: find the Reliability of component in the system in fig(1) by minimal cut method. Q2: A component A with constant failure rate 1.5 per 1000 h, B per to 2 in 1000h, A and B in parallel, find the Reliability system? [ by exponential distribution]. Q3: Give an example to find the minimal path and estimate the reliability of this block diagram. Q4: By Tie set method find the Reliability of fig (2) FUZarrow_forwardA sequence X = (xn) is said to be a contractive sequence if there is a constant 0 < C < 1 so that for all n = N. - |Xn+1 − xn| ≤ C|Xn — Xn−1| -arrow_forward1) Suppose continuous random variable X has sample space S = [1, ∞) and a pdf of the form f(x) = Ce-(2-1)/2. What is the expected value of X?arrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education





