CONNECT FOR THERMODYNAMICS: AN ENGINEERI
9th Edition
ISBN: 9781260048636
Author: CENGEL
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.8, Problem 81P
Steam is to be condensed on the shell side of a heat exchanger at 120°F. Cooling water enters the tubes at 60°F at a rate of 115.3 lbm/s and leaves at 73°F. Assuming the heat exchanger to be well insulated, determine (a) the rate of heat transfer in the heat exchanger and (b) the rate of exergy destruction in the heat exchanger. Take T0 = 77°F.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
1) Air enters an adiabatic heat exchanger (HX) with a mass flow rate of 850 kg/s at T₁ = 350°C and
P₁ = 110kPa and leaves at T₂ = 60°C and P₂ = 100kPa and transfers heat to water which enters
the HX as a saturated liquid at 16MPa. The water mass flow rate is 160 kg/s and it leaves the HX
at 15MPa. Air has a constant specific heat of Cp = 1.013 kJ/kg . K and specific heat ratio of k =
1.395. Calculate
b) the exergy destruction rate of the HX, in MW if the dead state temperature is T₂ = 20°C.
To
Hot
stream
+
w
ww
3
84
Cold
stream
1) Air enters an adiabatic heat exchanger (HX) with a mass flow rate of 850 kg/s at T₁ = 350°C and
P₁ = 110kPa and leaves at T₂ = 60°C and P₂ = 100kPa and transfers heat to water which enters
the HX as a saturated liquid at 16MPa. The water mass flow rate is 160 kg/s and it leaves the HX
at 15MPa. Air has a constant specific heat of cp = 1.013 kJ/kg . K and specific heat ratio of k =
1.395. Calculate
a) the temperature of water at state 4
Hot+
stream
+
To
www
ww
3
4
Cold
stream
Hot exhaust gases leaving an internal combustion engine at 400°C and 150 kPa at a rate of 0.8 kg/s are to be used to produce saturated steam at 200°C in an insulated heat exchanger. Water enters the heat exchanger at the ambient temperature of 20°C, and the exhaust gases leave the heat exchanger at 350°C. Determine the rate of exergy destruction in the heat exchanger.
Chapter 8 Solutions
CONNECT FOR THERMODYNAMICS: AN ENGINEERI
Ch. 8.8 - What final state will maximize the work output of...Ch. 8.8 - Is the exergy of a system different in different...Ch. 8.8 - Under what conditions does the reversible work...Ch. 8.8 - How does useful work differ from actual work? For...Ch. 8.8 - How does reversible work differ from useful work?Ch. 8.8 - Is a process during which no entropy is generated...Ch. 8.8 - Consider an environment of zero absolute pressure...Ch. 8.8 - It is well known that the actual work between the...Ch. 8.8 - Consider two geothermal wells whose energy...Ch. 8.8 - Consider two systems that are at the same pressure...
Ch. 8.8 - Prob. 11PCh. 8.8 - Does a power plant that has a higher thermal...Ch. 8.8 - Prob. 13PCh. 8.8 - Saturated steam is generated in a boiler by...Ch. 8.8 - One method of meeting the extra electric power...Ch. 8.8 - A heat engine that receives heat from a furnace at...Ch. 8.8 - Consider a thermal energy reservoir at 1500 K that...Ch. 8.8 - A heat engine receives heat from a source at 1100...Ch. 8.8 - A heat engine that rejects waste heat to a sink at...Ch. 8.8 - A geothermal power plant uses geothermal liquid...Ch. 8.8 - A house that is losing heat at a rate of 35,000...Ch. 8.8 - A freezer is maintained at 20F by removing heat...Ch. 8.8 - Prob. 24PCh. 8.8 - Prob. 25PCh. 8.8 - Prob. 26PCh. 8.8 - Can a system have a higher second-law efficiency...Ch. 8.8 - A mass of 8 kg of helium undergoes a process from...Ch. 8.8 - Which is a more valuable resource for work...Ch. 8.8 - Which has the capability to produce the most work...Ch. 8.8 - The radiator of a steam heating system has a...Ch. 8.8 - A well-insulated rigid tank contains 6 lbm of a...Ch. 8.8 - A pistoncylinder device contains 8 kg of...Ch. 8.8 - Prob. 35PCh. 8.8 - Prob. 36PCh. 8.8 - Prob. 37PCh. 8.8 - A pistoncylinder device initially contains 2 L of...Ch. 8.8 - A 0.8-m3 insulated rigid tank contains 1.54 kg of...Ch. 8.8 - An insulated pistoncylinder device initially...Ch. 8.8 - Prob. 41PCh. 8.8 - An insulated rigid tank is divided into two equal...Ch. 8.8 - A 50-kg iron block and a 20-kg copper block, both...Ch. 8.8 - Prob. 45PCh. 8.8 - Prob. 46PCh. 8.8 - Prob. 47PCh. 8.8 - A pistoncylinder device initially contains 1.4 kg...Ch. 8.8 - Prob. 49PCh. 8.8 - Prob. 50PCh. 8.8 - Prob. 51PCh. 8.8 - Air enters a nozzle steadily at 200 kPa and 65C...Ch. 8.8 - Prob. 54PCh. 8.8 - Prob. 55PCh. 8.8 - Argon gas enters an adiabatic compressor at 120...Ch. 8.8 - Prob. 57PCh. 8.8 - Prob. 58PCh. 8.8 - The adiabatic compressor of a refrigeration system...Ch. 8.8 - Refrigerant-134a at 140 kPa and 10C is compressed...Ch. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Combustion gases enter a gas turbine at 900C, 800...Ch. 8.8 - Steam enters a turbine at 9 MPa, 600C, and 60 m/s...Ch. 8.8 - Refrigerant-134a is condensed in a refrigeration...Ch. 8.8 - Prob. 66PCh. 8.8 - Refrigerant-22 absorbs heat from a cooled space at...Ch. 8.8 - Prob. 68PCh. 8.8 - Prob. 69PCh. 8.8 - Air enters a compressor at ambient conditions of...Ch. 8.8 - Hot combustion gases enter the nozzle of a...Ch. 8.8 - Prob. 72PCh. 8.8 - A 0.6-m3 rigid tank is filled with saturated...Ch. 8.8 - Prob. 74PCh. 8.8 - Prob. 75PCh. 8.8 - An insulated vertical pistoncylinder device...Ch. 8.8 - Liquid water at 200 kPa and 15C is heated in a...Ch. 8.8 - Prob. 78PCh. 8.8 - Prob. 79PCh. 8.8 - A well-insulated shell-and-tube heat exchanger is...Ch. 8.8 - Steam is to be condensed on the shell side of a...Ch. 8.8 - Prob. 82PCh. 8.8 - Prob. 83PCh. 8.8 - Prob. 84PCh. 8.8 - Prob. 85RPCh. 8.8 - Prob. 86RPCh. 8.8 - An aluminum pan has a flat bottom whose diameter...Ch. 8.8 - Prob. 88RPCh. 8.8 - Prob. 89RPCh. 8.8 - A well-insulated, thin-walled, counterflow heat...Ch. 8.8 - Prob. 92RPCh. 8.8 - Prob. 93RPCh. 8.8 - Prob. 94RPCh. 8.8 - Prob. 95RPCh. 8.8 - Nitrogen gas enters a diffuser at 100 kPa and 110C...Ch. 8.8 - Prob. 97RPCh. 8.8 - Steam enters an adiabatic nozzle at 3.5 MPa and...Ch. 8.8 - Prob. 99RPCh. 8.8 - A pistoncylinder device initially contains 8 ft3...Ch. 8.8 - An adiabatic turbine operates with air entering at...Ch. 8.8 - Steam at 7 MPa and 400C enters a two-stage...Ch. 8.8 - Prob. 103RPCh. 8.8 - Steam enters a two-stage adiabatic turbine at 8...Ch. 8.8 - Prob. 105RPCh. 8.8 - Prob. 106RPCh. 8.8 - Prob. 107RPCh. 8.8 - Prob. 108RPCh. 8.8 - Prob. 109RPCh. 8.8 - Prob. 111RPCh. 8.8 - A passive solar house that was losing heat to the...Ch. 8.8 - Prob. 113RPCh. 8.8 - A 4-L pressure cooker has an operating pressure of...Ch. 8.8 - Repeat Prob. 8114 if heat were supplied to the...Ch. 8.8 - Prob. 116RPCh. 8.8 - A rigid 50-L nitrogen cylinder is equipped with a...Ch. 8.8 - Prob. 118RPCh. 8.8 - Prob. 119RPCh. 8.8 - Prob. 120RPCh. 8.8 - Reconsider Prob. 8-120. The air stored in the tank...Ch. 8.8 - Prob. 122RPCh. 8.8 - Prob. 123RPCh. 8.8 - Prob. 124RPCh. 8.8 - Prob. 125RPCh. 8.8 - Prob. 126RPCh. 8.8 - Prob. 127RPCh. 8.8 - Water enters a pump at 100 kPa and 30C at a rate...Ch. 8.8 - Prob. 129RPCh. 8.8 - Prob. 130RPCh. 8.8 - Obtain a relation for the second-law efficiency of...Ch. 8.8 - Writing the first- and second-law relations and...Ch. 8.8 - Prob. 133RPCh. 8.8 - Keeping the limitations imposed by the second law...Ch. 8.8 - Prob. 135FEPCh. 8.8 - Prob. 136FEPCh. 8.8 - Prob. 137FEPCh. 8.8 - Prob. 138FEPCh. 8.8 - A furnace can supply heat steadily at 1300 K at a...Ch. 8.8 - A heat engine receives heat from a source at 1500...Ch. 8.8 - Air is throttled from 50C and 800 kPa to a...Ch. 8.8 - Prob. 142FEPCh. 8.8 - A 12-kg solid whose specific heat is 2.8 kJ/kgC is...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Refrigerant (known as R-134a) enters a heat exchanger at 100 kPa. The refrigerant is of 20% quality upon entering. It exits the heat exchanger as a saturated vapor also at 100kPa. An unknown liquid (specific heat capacity of 3.9 kJ/Kg.K) enters the heat exchanger at a rate of 1.1 kg/sec at 320.15 Kelvin. This unknown liquid exits at 278.15 degrees kelvin. Find: The mass flow rate or the refrigerant [kg/sec]Q (the rate of heat transfer)arrow_forwardIn a power plant steam, steam is continuously extracted from the turbine and in a heat exchanger there is a condensation of the extracted steam. The energy released during condensation of steam is used to operate a heat engine. A heat engine receives thermal energy at a rate of 1200 kJ/min from condensing steam and rejects waste heat to a lake at 25°C at a rate of 850 kJ/min. Determine the lowest possible condensing steam temperature.arrow_forwardSteam enters the condenser of a steam power plant at 30 kPa, a quality of 91 % and a mass flow rate (m) of 337 kg/min . It leaves the condenser as saturated liquid at 30 kPa. It is to be cooled with water from a nearby river by circulating the water through the tubes within the condenser. To prevent thermal pollution, the river water is not allowed to be heated to a temperature above 5°C. Part A Determine the mass flow rate (m) of the cooling water. Express your answer to the nearest integer. Vol AEo In vec kg/min Submit Request Answer Part B Determine the entropy generation rate (Sgen) in the heat exchanger. Express your answer to three significant figures. vec ? kW/K Submit Request Answer 國arrow_forward
- Saturated liquid water is heated in a heat exchanger until it exits as a saturated liquid vapor mixture. Hot oil is used to heat the water. The hot oil enters the heat exchanger at 150 C and exits at 40 C. The mass flowrate of the hot oil is 10 kg/s and has a specific heat of 2.2 kJ/kg-C. The water enters the heat exchanger at 25 C and 100 kPa. The water leaves the heat exchanger as a saturated liquid vapor mixture at 100 kPa. The mass flowrate of the water is 1.5 kg/s. It is also know that the enthalpy of the water exiting the heat exchanger is 1718.2 kJ/kg. In the question that follows, select the answer that is closest to the true value. What is the quality of the water at the exit of the heat exchanger?arrow_forwardRefrigerant 134 A enters in a condenser of a heat pump at 180 kPa and -4 0C and exits with a quality of 0.8 and the same pressure of 180 kPa. The mass flow rate of the refrigerant is 65 kg/h, and the heat pump compressor consumes 45 kJ/min of power. Determine the coefficient of performance of the heat pump. Type your answer in the first box.arrow_forwardSaturated liquid water is heated in a heat exchanger until it exits as a saturated liquid vapor mixture. Hot oil is used to heat the water. The hot oil enters the heat exchanger at 150 C and exits at 40 C. The mass flowrate of the hot oil is 11 kg/s and has a specific heat of 2.2 kJ/kg-C. The water enters the heat exchanger at 25 C and 100 kPa. The water leaves the heat exchanger as a saturated liquid vapor mixture at 100 kPa. The mass flowrate of the water is 1.5 kg/s. What is the enthalpy of the water at the exit of the heat exchanger in units of kJ/kg? Select the answer that is closest to the true value. A) 911 B) 1234 C) 1557 D) 1879 A Moving to another question will save this response. Question 1 of 11arrow_forward
- Saturated liquid water is heated in a heat exchanger until it exits as a saturated liquid vapor mixture. Hot oil is used to heat the water. The hot oil enters the heat exchanger at 150 C and exits at 40 C. The mass flowrate of the hot oil is 11 kg/s and has a specific heat of 2.2 kJ/kg-C. The water enters the heat exchanger at 25 C and 100 kPa. The water leaves the heat exchanger as a saturated liquid vapor mixture at 100 kPa. The mass flowrate of the water is 1.5 kg/s. What is the enthalpy of the water at the exit of the heat exchanger in units of kJ/kg? Select the answer that is closest to the true value. A) 911 B) 1234 C) 1557 D) 1879 AMoving to another question will save this response. Question 1 of 11arrow_forward4. Steam enters the condenser of a steam power plant at 20000 kPa and a quality of 95 percent with a mass flow rate of 20 Mg/h. It is to be cooled by water from a nearby river in circulating the water through the tubes within the condenser. To prevent thermal pollution, the river water is not allowed to experience a temperature rise above 10oC. If the steam is to leave the condenser as saturated liquid at 20000 Pa, determine the mass flow rate of the cooling water requiredarrow_forwardAn ammonia compressor operates on an evaporator pressure of 291.57 kPa and a condenser pressure of 1557 kPa. A Heat Exchanger is installed thus superheating the refrigerant by 100C and a subcooling by 50 C. The system is used to cool water at 2 kg/s from 250 C to 150 C. Given: h1=1476 kJ/kg , h2=1752 kJ/kg . Determine the ff: a.) mass flow of reffrigerant. kg/s b.) compressor work. kw c.) mass flow of cooling water needed in the condenser for a temp. drop of 180F. kg/sarrow_forward
- Saturated liquid water is heated in a heat exchanger until it exits as a saturated liquid vapor mixture. Hot oil is used to heat the water. The hot oil enters the heat exchanger at 150 C and exits at 40 C. The mass flowrate of the hot oil is 5 kg/s and has a specific heat of 2.2 kJ/kg-C. The water enters the heat exchanger at 25 C and 100 kPa. The water leaves the heat exchanger as a saturated liquid vapor mixture at 100 kPa. The mass flowrate of the water is 1.5 kg/s. In the question that follows, select the answer that is closest to the true value. What is the enthalpy of the water at the exit of the heat exchanger in units of kJ/kg?arrow_forwardHot exhaust gases leaving an internal combustion engine at 400oC and 150 kPa at a rate of 0.8 kg/s are to be used to produce saturated steam at 200oC in an insulated heat exchanger. Water enters the heat exchanger at the ambient temperature of 20oC, and the exhaust gases leave the hear exchanger at 350oC. Determine (a) the rate of steam production, (b) the rate of exergy destruction in the heat exchanger, and (c) the second-law efficiency of the heat exchanger.arrow_forwardRefrigerant 134a enters an air-cooled condenser at 12 bars and 60°C, and leaves as a saturated liquid at 12 bars. Atmospheric air at 35°C is blown over the condenser tubes and leaves at 45°C. The heat transfer between the two fluid streams equals 25 MJ/h. Changes in kinetic and potential energy are negligible. Make any reasonable assumptions if necessary. Determine (a) the mass flow rates for the R-134a and the air, in kg/h, Hint: Use the energy conservation on each of the { uid streams separately. (b) the entropy production rate in the condenser, in kJ h-'K-1, Hint: Use the entropy balance over the whole condenser. (c) the change in kinetic energy for R-134a if the pipe diameter is 2.0 cm, in kJ/h (d) Draw the T-s diagram for the process for R-134a. Air P=1 atm T3= 35°C %3! Ref rant 134a R-134a P = 12 bar 2 T = 60°C R-134a P2 = 12 bar Air 4- T4= 45°Carrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
What is entropy? - Jeff Phillips; Author: TED-Ed;https://www.youtube.com/watch?v=YM-uykVfq_E;License: Standard youtube license