Concept explainers
Exercises 1-2 involve credit cards that calculate interest using the average daily balance method. The monthly interest rate is 1.5% of the average daily balance. Each exercise shows transactions that occurred during the march 1- march 31 billing period. In each exercise,
a. Find the average daily balance for the billing period. Round to the nearest cent.
b. Find the interest to be paid on April 1, the next billing date. Round to the nearest cent.
c. Find the balance due on April 1.
d. This credit card requires a $10 minimum monthly payment if the balance due at the end of the billing period is less than $360. Otherwise, the minimum monthly payment is $$ of the balance due at the end of the billing period, rounded up to the nearest whole dollar. What is the minimum monthly payment due by april9?
Transaction Description | Transaction Amount |
Previous balance, $7150.00 | |
March 1Billing date | |
March 4 Payment | $ 400 credit |
March 6 Charge: Furniture | $ 1200 |
March 15 Charge: Gas | $40 |
March 30 Charge: Groceries | $50 |
March 31 End of billing period | |
Payment Due Date: April 9 |
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Thinking Mathematically Plus MyLab Math -- Access Card Package (7th Edition) (What's New in Service Math)
- (20 p) 1. Find a particular solution satisfying the given initial conditions for the third-order homogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y(3)+2y"-y-2y = 0; y(0) = 1, y'(0) = 2, y"(0) = 0; y₁ = e*, y2 = e¯x, y3 = e−2x (20 p) 2. Find a particular solution satisfying the given initial conditions for the second-order nonhomogeneous linear equation given below. (See Section 5.2 in your textbook if you need a review of the subject.) y"-2y-3y = 6; y(0) = 3, y'(0) = 11 yc = c₁ex + c2e³x; yp = −2 (60 p) 3. Find the general, and if possible, particular solutions of the linear systems of differential equations given below using the eigenvalue-eigenvector method. (See Section 7.3 in your textbook if you need a review of the subject.) = a) x 4x1 + x2, x2 = 6x1-x2 b) x=6x17x2, x2 = x1-2x2 c) x = 9x1+5x2, x2 = −6x1-2x2; x1(0) = 1, x2(0)=0arrow_forwardchool Which of the following functions describes the graph of g(x)--2√9-x²+37 9 8 7 6 4 2 -10-9-8-7-6-5-4-3-2-1 1 -1 -2 -4 -6 10 9 8 B 5 4 3 3 6 -10-9-8-7-6-5-4-3-2-1 2 3 4 6 1 -2 4 -5 -6 -8 -9 -10 10 -10-9-8-7-6-5-4-3-2-1 9 8 Lessons Assessments 6 5 4 + 2 1 1 2 3 4 5 6 8 -1 2 4 -5 -B 8 10 10 9 8 7 6 5 4 3 2 1 -10-9-8-7-6-5-4-3-2-1 1 2 3 4 5 6 B 9 10 -1 -2 -3 -5arrow_forwardIn the graph below triangle I'J'K' is the image of triangle UK after a dilation. 104Y 9 CO 8 7 6 5 I 4 3 2 J -10 -9 -8 -7 -6 -5 -4 -3 -21 1 2 3 4 5 6 7 8 9 10 2 K -3 -4 K' 5 -6 What is the center of dilation? (0.0) (-5. 2) (-8. 11 (9.-3) 6- 10arrow_forward
- Select all that apply. 104 8 6 4 2 U U' -10 -8 -6 4 -2 2 4 6 10 -2 V' W' -4 -6 -8 -10 W V Select 2 correct answerts! The side lengths are equal in measure. The scale factor is 1/5. The figure has been enlarged in size. The center of dilation is (0.0) 8 10 Xarrow_forward4. In a study of how students give directions, forty volunteers were given the task ofexplaining to another person how to reach a destination. Researchers measured thefollowing five aspects of the subjects’ direction-giving behavior:• whether a map was available or if directions were given from memory without a map,• the gender of the direction-giver,• the distances given as part of the directions,• the number of times directions such as “north” or “left” were used,• the frequency of errors in directions.a) Identify each of the variables in this study, and whether each is quantitative orqualitative. For each quantitative variable, state whether it is discrete or continuousb) Was this an observational study or an experimental study? Explain your answerarrow_forwardIn the graph below triangle I'J'K' is the image of triangle UK after a dilation. 104Y 9 CO 8 7 6 5 I 4 3 2 J -10 -9 -8 -7 -6 -5 -4 -3 -21 1 2 3 4 5 6 7 8 9 10 2 K -3 -4 K' 5 -6 What is the center of dilation? (0.0) (-5. 2) (-8. 11 (9.-3) 6- 10arrow_forward
- = 12:02 WeBWorK / 2024 Fall Rafeek MTH23 D02 / 9.2 Testing the Mean mu / 3 38 WEBWORK Previous Problem Problem List Next Problem 9.2 Testing the Mean mu: Problem 3 (1 point) Test the claim that the population of sophomore college students has a mean grade point average greater than 2.2. Sample statistics include n = 71, x = 2.44, and s = 0.9. Use a significance level of a = 0.01. The test statistic is The P-Value is between : The final conclusion is < P-value < A. There is sufficient evidence to support the claim that the mean grade point average is greater than 2.2. ○ B. There is not sufficient evidence to support the claim that the mean grade point average is greater than 2.2. Note: You can earn partial credit on this problem. Note: You are in the Reduced Scoring Period. All work counts for 50% of the original. Preview My Answers Submit Answers You have attempted this problem 0 times. You have unlimited attempts remaining. . Oli wwm01.bcc.cuny.eduarrow_forward>tt 1:32 > trend.1m 1m (sales > summary(trend.1m) - tt) #3###23 (i) #### Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 2107.220 57.997 36.332e-16 *** tt -43.500 3.067 -14.18 7.72e-15 *** > trend = ts (fitted (trend.1m), start-start (sales), freq-frequency (sales)) sales trend ###23%23 (ii) #### as.numeric((1:32 %% 4) > X > q1 > q2 > q3 > 94 = = = = - as.numeric((1:32 %% 4) as.numeric((1:32 %% 4) as.numeric((1:32 %% 4) == 1) 2) == == 3) == 0) > season.lm = 1m (resid (trend.1m) 0+q1 + q2 + q3 + q4) #3##23%23 (iii) #### > summary(season.1m) Coefficients: Estimate Std. Error t value Pr(>|t|) q1 -38.41 43.27 -0.888 0.38232 92 18.80 43.27 0.435 0.66719 q3 -134.78 43.27 -3.115 0.00422 ** 94 154.38 43.27 3.568 0.00132 ** > season = ts (fitted (season.lm), start=start (sales), freq=frequency (sales)) > Y X season %23%23%23%23 (iv) #### >ar (Y, aic=FALSE, order.max=1) #23%23%23%23 (v) #### Coefficients: 1 0.5704 Order selected 1 sigma 2 estimated as 9431 > ar(Y, aic=FALSE,…arrow_forwardPlease sketch questions 1, 2 and 6arrow_forward
- QUESTION 18 - 1 POINT Jessie is playing a dice game and bets $9 on her first roll. If a 10, 7, or 4 is rolled, she wins $9. This happens with a probability of . If an 8 or 2 is rolled, she loses her $9. This has a probability of J. If any other number is rolled, she does not win or lose, and the game continues. Find the expected value for Jessie on her first roll. Round to the nearest cent if necessary. Do not round until the final calculation. Provide your answer below:arrow_forwardsolve questions 3, 4,5, 7, 8, and 9arrow_forwardFind the perimeter and areaarrow_forward
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education