Concept explainers
The change in the work potential of the air stored in the tank.
The change in exergy of the air stored in the tank.

Answer to Problem 120RP
The change in the work potential of the air stored in the tank is
The change in exergy of the air stored in the tank is
Explanation of Solution
Write the formula to calculate initial mass of air in the tank
Here, initial pressure of air is
Write the formula to calculate final mass of air in the tank
Here, final pressure of air is
Write the formula to calculate temperature of air at state 2 using isentropic relation
Here, temperature of air at state 1 is
Apply the conservation of mass to the tank which gives the following relation.
Here, rate of change in mass of air is
Write the equation for the rate of heat transfer using the first law of thermodynamics
Here, enthalpy of air is h, internal energy of air is u, volume of tank is V, specific heat capacities at constant pressure and constant volume are
From the final temperature equation and multiplying the above relation by
Integrate the above relation.
Apply the first law to the tank and compressor.
Here, rate of work potential of the air stored in the tank is
Integrate the above relation.
Here, change in the work potential of the air stored in the tank is
Apply the first law and second law to the tank and compressor and the mass balance incorporated. It gives,
Here, dead state temperature is
Integrate the above relation.
Here, reversible work done on the system is
Conclusion:
Refer Table A-2, "Ideal-gas specific heats of various common gases", obtain the properties of air at the room temperature.
Substitute
Substitute
Substitute
Substitute
The negative sign shows that the work is done on the compressor.
Thus, the change in the work potential of the air stored in the tank is
Substitute
This is the exergy change of the air stored in the tank.
Thus, the change in exergy of the air stored in the tank is
Want to see more full solutions like this?
Chapter 8 Solutions
THERMODYNAMICS LLF W/ CONNECT ACCESS
- Uppgift 2 (9p) I77777 20 kN 10 kN/m 4 [m] 2 2 Bestäm tvärkrafts- och momentdiagram för balken i figuren ovan. Extrempunkter ska anges med både läge och värde i diagrammen.arrow_forward**Problem 8-45.** The man has a mass of 60 kg and the crate has a mass of 100 kg. If the coefficient of static friction between his shoes and the ground is \( \mu_s = 0.4 \) and between the crate and the ground is \( \mu_c = 0.3 \), determine if the man is able to move the crate using the rope-and-pulley system shown. **Diagram Explanation:** The diagram illustrates a scenario where a man is attempting to pull a crate using a rope-and-pulley system. The setup is as follows: - **Crate (C):** Positioned on the ground with a rope attached. - **Rope:** Connects the crate to a pulley system and extends to the man. - **Pulley on Tree:** The rope runs over a pulley mounted on a tree which redirects the rope. - **Angles:** - The rope between the crate and tree forms a \(30^\circ\) angle with the horizontal. - The rope between the tree and the man makes a \(45^\circ\) angle with the horizontal. - **Man (A):** Pulling on the rope with the intention of moving the crate. This arrangement tests the…arrow_forwardplease solve this problems follow what the question are asking to do please show me step by steparrow_forward
- please help me to solve this problem and determine the stress for each point i like to be explained step by step with the correct answerarrow_forwardplease solve this problem for me the best way that you can explained to solve please show me the step how to solvearrow_forwardplese solbe this problem and give the correct answer solve step by step find the forces and line actionarrow_forward
- please help me to solve this problems first write the line of action and them find the forces {fx=0: fy=0: mz=0: and them draw the shear and bending moment diagram. please explain step by steparrow_forwardplease solve this problem step by step like human and give correct answer step by steparrow_forwardPROBLEM 11: Determine the force, P, that must be exerted on the handles of the bolt cutter. (A) 7.5 N (B) 30.0 N (C) 52.5 N (D) 300 N (E) 325 N .B X 3 cm E 40 cm cm F = 1000 N 10 cm 3 cm boltarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





