Concept explainers
(a)
The binary number
Answer to Problem 10AR
The conversion of binary number
Explanation of Solution
Given:
The binary number is
Concept used:
For conversion binary number into hexadecimal number, split the number into nibble (4 digits at a time) and add zeroes to fill out the groups.
Assign each group the corresponding hexadecimal number from the table given below:
Decimal | Binary | Hexadecimal |
0 | 0000 | 0 |
1 | 0001 | 1 |
2 | 0010 | 2 |
3 | 0011 | 3 |
4 | 0100 | 4 |
5 | 0101 | 5 |
6 | 0110 | 6 |
7 | 0111 | 7 |
8 | 1000 | 8 |
9 | 1001 | 9 |
10 | 1010 | A |
11 | 1011 | B |
12 | 1100 | C |
13 | 1101 | D |
14 | 1110 | E |
15 | 1111 | F |
Table 1
Calculation:
The binary number is converted as follows:
Thus, the conversion of binary number
Conclusion:
The conversion of binary number
(b)
The binary number
Answer to Problem 10AR
The conversion of binary number
Explanation of Solution
Given:
The binary number is
Calculation:
The binary number is converted as follows:
Thus, the conversion of binary number
Conclusion:
The conversion of binary number
(c)
The binary number
Answer to Problem 10AR
The conversion of binary number
Explanation of Solution
Given:
The binary number is
Calculation:
The binary number is converted as follows:
Thus, the conversion of binary number
Conclusion:
The conversion of binary number
(d)
The binary number
Answer to Problem 10AR
The conversion of binary number
Explanation of Solution
Given:
The binary number is
Calculation:
The binary number is converted as follows:
Thus, the conversion of binary number
Conclusion:
The conversion of binary number
(e)
The binary number
Answer to Problem 10AR
The conversion of binary number
Explanation of Solution
Given:
The binary number is
Calculation:
The binary number is converted as follows:
Thus, the conversion of binary number
Conclusion:
The conversion of binary number
(f)
The binary number
Answer to Problem 10AR
The conversion of binary number
Explanation of Solution
Given:
The binary number is
Calculation:
The binary number is converted as follows:
Thus, the conversion of binary number
Conclusion:
The conversion of binary number
Want to see more full solutions like this?
Chapter 88 Solutions
Mathematics For Machine Technology
- 5. [10 marks] Let G = (V,E) be a graph, and let X C V be a set of vertices. Prove that if |S||N(S)\X for every SCX, then G contains a matching M that matches every vertex of X (i.e., such that every x X is an end of an edge in M).arrow_forwardQ/show that 2" +4 has a removable discontinuity at Z=2i Z(≥2-21)arrow_forwardRefer to page 100 for problems on graph theory and linear algebra. Instructions: • Analyze the adjacency matrix of a given graph to find its eigenvalues and eigenvectors. • Interpret the eigenvalues in the context of graph properties like connectivity or clustering. Discuss applications of spectral graph theory in network analysis. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS3IZ9qoHazb9tC440 AZF/view?usp=sharing]arrow_forward
- Refer to page 110 for problems on optimization. Instructions: Given a loss function, analyze its critical points to identify minima and maxima. • Discuss the role of gradient descent in finding the optimal solution. . Compare convex and non-convex functions and their implications for optimization. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 140 for problems on infinite sets. Instructions: • Compare the cardinalities of given sets and classify them as finite, countable, or uncountable. • Prove or disprove the equivalence of two sets using bijections. • Discuss the implications of Cantor's theorem on real-world computation. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qoHazb9tC440 AZF/view?usp=sharing]arrow_forwardRefer to page 120 for problems on numerical computation. Instructions: • Analyze the sources of error in a given numerical method (e.g., round-off, truncation). • Compute the error bounds for approximating the solution of an equation. • Discuss strategies to minimize error in iterative methods like Newton-Raphson. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440 AZF/view?usp=sharing]arrow_forward
- Refer to page 145 for problems on constrained optimization. Instructions: • Solve an optimization problem with constraints using the method of Lagrange multipliers. • • Interpret the significance of the Lagrange multipliers in the given context. Discuss the applications of this method in machine learning or operations research. Link: [https://drive.google.com/file/d/1wKSrun-GlxirS31Z9qo Hazb9tC440 AZF/view?usp=sharing]arrow_forwardGive an example of a graph with at least 3 vertices that has exactly 2 automorphisms(one of which is necessarily the identity automorphism). Prove that your example iscorrect.arrow_forward3. [10 marks] Let Go (Vo, Eo) and G₁ = (V1, E1) be two graphs that ⚫ have at least 2 vertices each, ⚫are disjoint (i.e., Von V₁ = 0), ⚫ and are both Eulerian. Consider connecting Go and G₁ by adding a set of new edges F, where each new edge has one end in Vo and the other end in V₁. (a) Is it possible to add a set of edges F of the form (x, y) with x € Vo and y = V₁ so that the resulting graph (VUV₁, Eo UE₁ UF) is Eulerian? (b) If so, what is the size of the smallest possible F? Prove that your answers are correct.arrow_forward
- Mathematics For Machine TechnologyAdvanced MathISBN:9781337798310Author:Peterson, John.Publisher:Cengage Learning,