(a) Show that
Thus show that if
This is called the exponential shift.
(b) Use (a) to show that
(c) Replace
This is called the inverse exponential shift.
(d) Using (c), we can change a diff5erential equation whose right-hand side is an exponential times a polynomial, to one whose right-hand side is just a polynomial. For example, consider
Show that a solution of
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
Mathematical Methods in the Physical Sciences
Additional Math Textbook Solutions
Elementary Statistics
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Algebra and Trigonometry (6th Edition)
Intro Stats, Books a la Carte Edition (5th Edition)
University Calculus: Early Transcendentals (4th Edition)
College Algebra (7th Edition)
- 21. Prove that: {(a, b), - sa≤barrow_forward10. (a) Define the independence of sets A, B, C. (b) Provide an example where A, B, C are pairwise independent but not mutually independent. (c) Give an example where P(AnBnC) = P(A)P(B)P(C), but the sets are not pairwise independent.arrow_forward23. State Bayes' formula. Jaching R. Machine.arrow_forward(d) Show that A, and A' are tail events.arrow_forward11. (a) Define the (mathematical and conceptual) definition of conditional probability P(A|B). (b) Explain the product law in conditional probability. (c) Explain the relation between independence and the conditional probability of two sets.arrow_forward12. (a) Explain tail events and the tail o-field. Give an example. (b) State (without proof) the Kolmogorov zero-one law.arrow_forward24. A factory produces items from two machines: Machine A and Machine B. Machine A produces 60% of the total items, while Machine B produces 40%. The probability that an item produced by Machine A is defective is P(D|A)=0.03. The probability that an item produced by Machine B is defective is P(D|B) = 0.05. (a) What is the probability that a randomly selected product be defective, P(D)? (b) If a randomly selected item from the production line is defective, calculate the probability that it was produced by Machine A, P(A|D).arrow_forward13. Let (, F, P) be a probability space and X a function from 2 to R. Explain when X is a random variable.arrow_forward(b) Prove that if ACBC (A), then (A)=(B).arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning