Let x represent the number of country songs that Sierra puts on a playlist on her portable media player. Let y represent the number of rock songs that she puts on the playlist. For parts (a)-(e), write an inequality to represent the given statement. a. Sierra will put at least 6 country songs on the playlist. b. Sierra will put no more than 10 rock songs on the playlist. c. Sierra wants to limit the length of the playlist to at most 20 songs. d. The number of country songs cannot be negative. e. The number of rock songs cannot be negative. f. Graph the solution set to the system of inequalities from parts (a)-(e).
Let x represent the number of country songs that Sierra puts on a playlist on her portable media player. Let y represent the number of rock songs that she puts on the playlist. For parts (a)-(e), write an inequality to represent the given statement. a. Sierra will put at least 6 country songs on the playlist. b. Sierra will put no more than 10 rock songs on the playlist. c. Sierra wants to limit the length of the playlist to at most 20 songs. d. The number of country songs cannot be negative. e. The number of rock songs cannot be negative. f. Graph the solution set to the system of inequalities from parts (a)-(e).
Solution Summary: The author explains that the required inequality is xge 6, which represents the number of country songs Sierra puts on her portable media player.
Let
x
represent the number of country songs that Sierra puts on a playlist on her portable media player. Let
y
represent the number of rock songs that she puts on the playlist. For parts (a)-(e), write an inequality to represent the given statement.
a. Sierra will put at least
6
country songs on the playlist.
b. Sierra will put no more than
10
rock songs on the playlist.
c. Sierra wants to limit the length of the playlist to at most
20
songs.
d. The number of country songs cannot be negative.
e. The number of rock songs cannot be negative.
f. Graph the solution set to the system of inequalities from parts (a)-(e).
3.1 Limits
1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice.
x+3°
x+3*
x+3
(a) Is 5
(c) Does not exist
(b) is 6
(d) is infinite
1 pts
Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and
G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is
Question 1
-0.246
0.072
-0.934
0.478
-0.914
-0.855
0.710
0.262
.
2. Answer the following questions.
(A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity
Vx (VF) V(V •F) - V²F
(B) [50%] Remark. You are confined to use the differential identities.
Let u and v be scalar fields, and F be a vector field given by
F = (Vu) x (Vv)
(i) Show that F is solenoidal (or incompressible).
(ii) Show that
G =
(uvv – vVu)
is a vector potential for F.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.