EBK ALGEBRA AND TRIGONOMETRY
4th Edition
ISBN: 8220100548512
Author: Watson
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 8.4, Problem 54E
Finding Parametric Equations for a Curve Two
(a) Find parametric equations for the curve traced out by the point
(b) Graph the curve using a graphing device, with
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Thus, we can represent the points of the unit circle using parametric equations. The
standard way to do this is for the circle is to represent each point on it by x =
and y =
(a) Sketch the curve described by the equations x = 2 – 3t, y = 1 + t. Then find a
Cartesian equation of the curve.
(b) Voting Question: Find a parametric representation for the curve y = x². Circle your
answer.
(a) x(t) =t and y(t) = t²
(b) x(t) =-t and y(t) = t²
(c) x(t) = 1 – t and y(t) = 1 – 2t +t?
(d) more than one of the above
(e) all of the above
(c) Find a Cartesian equation of the curve x = V1+ t, y = \t – 1. Sketch the curve,
indicate with an arrow the direction in which the curve is traced as the parameter
and
%3D
|
increases.
Obtain the parametric equations of:An epicycloid curve described by a point on the circumference of radius 3 that turns without slipping on another circumference of radius 5 and outside of it makes a sketch of the curve by analyzing the angles for which the point returns to the circumference of greater radius
An air traffic controller spots two planes at the same altitude flying toward each other (see figure). Their flight paths are 20° and 315°. One plane is 150 miles from point P with a speed of 375 miles per hour. The other is 190 miles from point P with a speed of 450 miles per hour. (a) Find parametric equations for the path of each plane where t is the time in hours, with t = 0 corresponding to the time at which the air traffic controller spots the planes. (b) Use the result of part (a) to write the distance between the planes as a function of t. (c) Use a graphing utility to graph the function in part (b). When will the distance between the planes be minimum? If the planes must keep a separation of at least 3 miles, is the requirement met?
Chapter 8 Solutions
EBK ALGEBRA AND TRIGONOMETRY
Ch. 8.1 - CONCEPTS We can describe the location of a point...Ch. 8.1 - Prob. 2ECh. 8.1 - Prob. 3ECh. 8.1 - Prob. 4ECh. 8.1 - Prob. 5ECh. 8.1 - Prob. 6ECh. 8.1 - SKILLS 5-10 Plotting Points in Polar Coordinates...Ch. 8.1 - Prob. 8ECh. 8.1 - Prob. 9ECh. 8.1 - Prob. 10E
Ch. 8.1 - Prob. 11ECh. 8.1 - Prob. 12ECh. 8.1 - SKILLS 11-16 Different Polar Coordinates for the...Ch. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - SKILLS 17-24 Points in Polar Coordinates...Ch. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - SKILLS 25-26 Rectangular Coordinates to Polar...Ch. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - 29-36 Polar Coordinates to Rectangular Coordinates...Ch. 8.1 - Prob. 32ECh. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - Prob. 35ECh. 8.1 - Prob. 36ECh. 8.1 - SKILLS 37-44 Rectangular Coordinates to Polar...Ch. 8.1 - Prob. 38ECh. 8.1 - Prob. 39ECh. 8.1 - Prob. 40ECh. 8.1 - Prob. 41ECh. 8.1 - Prob. 42ECh. 8.1 - 37-44 Rectangular Coordinates to Polar Coordinates...Ch. 8.1 - Prob. 44ECh. 8.1 - Prob. 45ECh. 8.1 - Prob. 46ECh. 8.1 - Prob. 47ECh. 8.1 - Prob. 48ECh. 8.1 - SKILLS 45-50 Rectangular equations to polar...Ch. 8.1 - Prob. 50ECh. 8.1 - Prob. 51ECh. 8.1 - Prob. 52ECh. 8.1 - Prob. 53ECh. 8.1 - Prob. 54ECh. 8.1 - SKILLS 51-70 Polar Equations to Rectangular...Ch. 8.1 - Prob. 56ECh. 8.1 - Prob. 57ECh. 8.1 - Prob. 58ECh. 8.1 - Prob. 59ECh. 8.1 - Prob. 60ECh. 8.1 - SKILLS 51-70 Polar Equations to Rectangular...Ch. 8.1 - Prob. 62ECh. 8.1 - Prob. 63ECh. 8.1 - Prob. 64ECh. 8.1 - Prob. 65ECh. 8.1 - Prob. 66ECh. 8.1 - SKILLS 51-70 Polar Equations to Rectangular...Ch. 8.1 - Prob. 68ECh. 8.1 - Prob. 69ECh. 8.1 - Prob. 70ECh. 8.1 - Prob. 71ECh. 8.1 - Prob. 72ECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - 17-22 Polar to Rectangular Sketch a graph of the...Ch. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - Prob. 27ECh. 8.2 - Prob. 28ECh. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Prob. 31ECh. 8.2 - Prob. 32ECh. 8.2 - Prob. 33ECh. 8.2 - Prob. 34ECh. 8.2 - Prob. 35ECh. 8.2 - Prob. 36ECh. 8.2 - Prob. 37ECh. 8.2 - Prob. 38ECh. 8.2 - Prob. 39ECh. 8.2 - Prob. 40ECh. 8.2 - Prob. 41ECh. 8.2 - Prob. 42ECh. 8.2 - 2346 Graphing Polar EquationsSketch a graph of the...Ch. 8.2 - Prob. 44ECh. 8.2 - Prob. 45ECh. 8.2 - Prob. 46ECh. 8.2 - Prob. 47ECh. 8.2 - Prob. 48ECh. 8.2 - Prob. 49ECh. 8.2 - Prob. 50ECh. 8.2 - Prob. 51ECh. 8.2 - Prob. 52ECh. 8.2 - Prob. 53ECh. 8.2 - Prob. 54ECh. 8.2 - Prob. 55ECh. 8.2 - Prob. 56ECh. 8.2 - Prob. 57ECh. 8.2 - Prob. 58ECh. 8.2 - Prob. 59ECh. 8.2 - Prob. 60ECh. 8.2 - Prob. 61ECh. 8.2 - Prob. 62ECh. 8.2 - Prob. 63ECh. 8.2 - Prob. 64ECh. 8.2 - Prob. 65ECh. 8.2 - Prob. 66ECh. 8.2 - DISCUSSDISCOVERPROVEWRITE DISCUSS: Choosing a...Ch. 8.3 - CONCEPTS A complex number z=a+bi has two parts: a...Ch. 8.3 - Prob. 2ECh. 8.3 - Prob. 3ECh. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - SKILLS 514 A Complex Number and Its Modulus Graph...Ch. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - SKILLS 514A Complex Number and Its Modulus Graph...Ch. 8.3 - Prob. 14ECh. 8.3 - SKILLS 15-16Graphing Complex Numbers. Sketch the...Ch. 8.3 - Prob. 16ECh. 8.3 - Prob. 17ECh. 8.3 - Prob. 18ECh. 8.3 - SKILLS 19-20Graphing Complex Numbers. Sketch the...Ch. 8.3 - Prob. 20ECh. 8.3 - Prob. 21ECh. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - 21-28 Graphing Sets of Complex Numbers Sketch the...Ch. 8.3 - 21-28 Graphing Sets of Complex Numbers Sketch the...Ch. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.3 - Prob. 28ECh. 8.3 - Prob. 29ECh. 8.3 - Prob. 30ECh. 8.3 - 2948 Polar Form of Complex Numbers Write the...Ch. 8.3 - Prob. 32ECh. 8.3 - Prob. 33ECh. 8.3 - Prob. 34ECh. 8.3 - Prob. 35ECh. 8.3 - Prob. 36ECh. 8.3 - 2948 Polar Form of Complex Numbers Write the...Ch. 8.3 - Prob. 38ECh. 8.3 - Prob. 39ECh. 8.3 - Prob. 40ECh. 8.3 - Prob. 41ECh. 8.3 - Prob. 42ECh. 8.3 - 2948 Polar Form of Complex Numbers Write the...Ch. 8.3 - Prob. 44ECh. 8.3 - Prob. 45ECh. 8.3 - Prob. 46ECh. 8.3 - Prob. 47ECh. 8.3 - Prob. 48ECh. 8.3 - SKILLS 49-56Product and Quotients of Complex...Ch. 8.3 - Prob. 50ECh. 8.3 - Prob. 51ECh. 8.3 - Prob. 52ECh. 8.3 - Prob. 53ECh. 8.3 - Prob. 54ECh. 8.3 - 49-56 Product and Quotients of Complex numbersFind...Ch. 8.3 - Prob. 56ECh. 8.3 - Prob. 57ECh. 8.3 - Prob. 58ECh. 8.3 - Prob. 59ECh. 8.3 - Prob. 60ECh. 8.3 - 57-64 Product and Quotients of Complex...Ch. 8.3 - Prob. 62ECh. 8.3 - Prob. 63ECh. 8.3 - Prob. 64ECh. 8.3 - Prob. 65ECh. 8.3 - Prob. 66ECh. 8.3 - SKILLS 65-76Powers Using De Moivres TheoremFind...Ch. 8.3 - SKILLS 65-76Powers Using De Moivres TheoremFind...Ch. 8.3 - Prob. 69ECh. 8.3 - Prob. 70ECh. 8.3 - Prob. 71ECh. 8.3 - Prob. 72ECh. 8.3 - SKILLS 65-76Powers Using De Moivres TheoremFind...Ch. 8.3 - Prob. 74ECh. 8.3 - Prob. 75ECh. 8.3 - Prob. 76ECh. 8.3 - Prob. 77ECh. 8.3 - Prob. 78ECh. 8.3 - SKILLS 77-86Roots of Complex NumbersFind the...Ch. 8.3 - Prob. 80ECh. 8.3 - Prob. 81ECh. 8.3 - 77-86Roots of Complex NumbersFind the indicated...Ch. 8.3 - Prob. 83ECh. 8.3 - Prob. 84ECh. 8.3 - 77-86 Roots of Complex NumbersFind the indicated...Ch. 8.3 - Prob. 86ECh. 8.3 - Prob. 87ECh. 8.3 - Prob. 88ECh. 8.3 - Prob. 89ECh. 8.3 - Prob. 90ECh. 8.3 - Prob. 91ECh. 8.3 - Prob. 92ECh. 8.3 - Prob. 93ECh. 8.3 - Prob. 94ECh. 8.3 - Prob. 95ECh. 8.3 - Prob. 96ECh. 8.3 - Prob. 97ECh. 8.3 - Prob. 98ECh. 8.3 - Prob. 99ECh. 8.3 - Prob. 100ECh. 8.3 - Prob. 101ECh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - Prob. 24ECh. 8.4 - Prob. 25ECh. 8.4 - Prob. 26ECh. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - Prob. 30ECh. 8.4 - Prob. 31ECh. 8.4 - Prob. 32ECh. 8.4 - Prob. 33ECh. 8.4 - Prob. 34ECh. 8.4 - Prob. 35ECh. 8.4 - Prob. 36ECh. 8.4 - Prob. 37ECh. 8.4 - Prob. 38ECh. 8.4 - Prob. 39ECh. 8.4 - Prob. 40ECh. 8.4 - Prob. 41ECh. 8.4 - Prob. 42ECh. 8.4 - Prob. 43ECh. 8.4 - Prob. 44ECh. 8.4 - Prob. 45ECh. 8.4 - Prob. 46ECh. 8.4 - Prob. 47ECh. 8.4 - Prob. 48ECh. 8.4 - Prob. 49ECh. 8.4 - Prob. 50ECh. 8.4 - Prob. 51ECh. 8.4 - Prob. 52ECh. 8.4 - Prob. 53ECh. 8.4 - Finding Parametric Equations for a Curve Two...Ch. 8.4 - Prob. 55ECh. 8.4 - Prob. 56ECh. 8.4 - Prob. 57ECh. 8.4 - Prob. 58ECh. 8.4 - Prob. 59ECh. 8.4 - Prob. 60ECh. 8.4 - Prob. 61ECh. 8.4 - Prob. 62ECh. 8.4 - Prob. 63ECh. 8.4 - Epicycloid If the circle C of Exercise 63 rolls on...Ch. 8.4 - Longbow CurveIn the following figure, the circle...Ch. 8.4 - Prob. 66ECh. 8.4 - Prob. 67ECh. 8.4 - Prob. 68ECh. 8.4 - Prob. 69ECh. 8.4 - Prob. 70ECh. 8.4 - Prob. 71ECh. 8.CR - Prob. 1CCCh. 8.CR - Prob. 2CCCh. 8.CR - Prob. 3CCCh. 8.CR - Prob. 4CCCh. 8.CR - a How do we express the complex number z in polar...Ch. 8.CR - Prob. 6CCCh. 8.CR - Prob. 7CCCh. 8.CR - Prob. 8CCCh. 8.CR - Prob. 9CCCh. 8.CR - Prob. 1ECh. 8.CR - Prob. 2ECh. 8.CR - Prob. 3ECh. 8.CR - Prob. 4ECh. 8.CR - Prob. 5ECh. 8.CR - Prob. 6ECh. 8.CR - Prob. 7ECh. 8.CR - Prob. 8ECh. 8.CR - Prob. 9ECh. 8.CR - Prob. 10ECh. 8.CR - Prob. 11ECh. 8.CR - Prob. 12ECh. 8.CR - Prob. 13ECh. 8.CR - Prob. 14ECh. 8.CR - Prob. 15ECh. 8.CR - Prob. 16ECh. 8.CR - Prob. 17ECh. 8.CR - Prob. 18ECh. 8.CR - Prob. 19ECh. 8.CR - Prob. 20ECh. 8.CR - Prob. 21ECh. 8.CR - Prob. 22ECh. 8.CR - Prob. 23ECh. 8.CR - Prob. 24ECh. 8.CR - Prob. 25ECh. 8.CR - Prob. 26ECh. 8.CR - Prob. 27ECh. 8.CR - Prob. 28ECh. 8.CR - Prob. 29ECh. 8.CR - Prob. 30ECh. 8.CR - Prob. 31ECh. 8.CR - Prob. 32ECh. 8.CR - Prob. 33ECh. 8.CR - Prob. 34ECh. 8.CR - Prob. 35ECh. 8.CR - Prob. 36ECh. 8.CR - Prob. 37ECh. 8.CR - Prob. 38ECh. 8.CR - Prob. 39ECh. 8.CR - Prob. 40ECh. 8.CR - Prob. 41ECh. 8.CR - Prob. 42ECh. 8.CR - Prob. 43ECh. 8.CR - Prob. 44ECh. 8.CR - Prob. 45ECh. 8.CR - Prob. 46ECh. 8.CR - Prob. 47ECh. 8.CR - Prob. 48ECh. 8.CR - Prob. 49ECh. 8.CT - Prob. 1CTCh. 8.CT - Prob. 2CTCh. 8.CT - Prob. 3CTCh. 8.CT - Prob. 4CTCh. 8.CT - Prob. 5CTCh. 8.CT - Find the cube roots of 27i, and sketch these roots...Ch. 8.CT - Prob. 7CTCh. 8.CT - Prob. 8CTCh. 8.CT - Prob. 9CTCh. 8.FOM - Trajectories Are Parabolas From the graphs in...Ch. 8.FOM - Path of a Baseball Suppose a baseball is thrown at...Ch. 8.FOM - Path of a Rocket Suppose that a rocket is fired at...Ch. 8.FOM - Firing a Missile The initial speed of a missile is...Ch. 8.FOM - Prob. 5PCh. 8.FOM - Shooting into the Wind Suppose that a projectile...Ch. 8.FOM - Shooting into the Wind Using the parametric...Ch. 8.FOM - Prob. 8P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Shooting into the Wind Suppose that a projectile is fired into a headwind that pushes it back so as to reduce its horizontal speed by a constant amount . Find parametric equations for the path of the projectile.arrow_forwardFor Question 1 through 6, fill in the blank with an appropriate word or expression. When we sketch the graph for a pair of parametric equations, the resulting curve is called a.arrow_forwardEpicycloid If the circle C of Exercise 63 rolls on the outside of the larger circle, the curve traced out by P is called an epicycloid. Find parametric equations for the epicycloid. Hypocycloid A circle C of radius b rolls on the inside of a larger circle of radius a centered at the origin. Let P be a fixed point on the smaller circle, with the initial position at the point (a,0) as shown in the figure. The curve traced out by P is called a hypocycloid. a Show that parametric equations of hypocycloid are x=(ab)cos+bcos(abb) y=(ab)sinbsin(abb) b If a=4b, the hypocycloid is called an asteroid. Show that in this case parametric equations can be reduced to x=acos3y=asin3 Sketch the curve. Eliminate the parameter to obtain an equation for the asteroid in rectangular coordinates.arrow_forward
- Find a set of parametric equations to represent the graph of y=x2+2, using each parameter. a. t=x b. t=2xarrow_forwardLongbow CurveIn the following figure, the circle of radius a is stationary, and for every , the point P is the midpoint of the segment QR. The curve traced out by P for 0<< is called the longbow curve. Find the parametric equations for this curve.arrow_forwardA semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 50 feet and a height at the center of 10 feet. (a) Sketch the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin. Label the coordinates of the known points. (b) Find an equation of the semielliptical arch over the tunnel. (c) You are driving a moving truck that has a width of 8 feet and a height of 9 feet. Will the moving truck clear the opening of the arch?arrow_forward
- The parametric equations and parameter intervals for the motion of a particle in the xy-plane are given below. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation. Indicate the portion of the graph traced by the particle and the direction of motion. x= sint and y = 2 cos (2t), -sts; Find an equation that relates x and y directly. y = Graph the parametric curve below. Indicate the direction of motion as t increases. Choose the correct graph below. O A. OB. OC. OD. Indicate the portion of the graph traced by the particle. Choose the correct answer below. O A. The entire graph O B. None of the graph O C. The portion of the graph where t is greater than O D. The portion of the graph where t is less thanarrow_forward3. Pick three non-collinear points A, B, and C (e.g., A(2, -1,2), B(-3, 4, 0), C(1, 3, 2)). Determine the following quantities.arrow_forward
arrow_back_ios
arrow_forward_ios
Recommended textbooks for you
- Trigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningAlgebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Chain Rule dy:dx = dy:du*du:dx; Author: Robert Cappetta;https://www.youtube.com/watch?v=IUYniALwbHs;License: Standard YouTube License, CC-BY
CHAIN RULE Part 1; Author: Btech Maths Hub;https://www.youtube.com/watch?v=TIAw6AJ_5Po;License: Standard YouTube License, CC-BY