Concept explainers
For Exercises 43-44, use the Fibonacci sequence
. Recall that the Fibonacci sequence can be defined recursively as
for
Prove that
Want to see the full answer?
Check out a sample textbook solutionChapter 8 Solutions
College Algebra
- Write an arithmetic sequence using a recursive formula. Show the first 4 terms, and then find the 31stterm.arrow_forwardThe Fibonacci sequence fn=1,1,2,3,5,8,13,21,... is defined recursively by f1=1,f2=1,fn+2=fn+1+fn for n=1,2,3,... a. Prove f1+f2+...+fn=fn+21 for all positive integers n. b. Use complete induction to prove that fn2n for all positive integers n. c. Use complete induction to prove that fn is given by the explicit formula fn=(1+5)n(15)n2n5 (This equation is known as Binet's formula, named after the 19th-century French mathematician Jacques Binet.)arrow_forwardWhat is an arithmetic sequence?arrow_forward
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw Hill