Algebra and Trigonometry
4th Edition
ISBN: 9781305719781
Author: James Stewart, Lothar Redlin, Saleem Watson
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.4, Problem 36E
To determine
To find:
The parametric equations for the ellipse.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
What curve do the parametric equations trace out? Find the equation for the curve.
X =
y =
12+ cost
12 - sin t
The curve is the circle with equation (x − 12)² + (y + 12)² = 1.
O The curve is the circle with equation x²
+ y² = 144.
The curve is the hyperbola with equation x²
- y² = 144.
The curve is the circle with equation (x 12)² + (y - 12)² = 1.
O The curve is the circle with equation (x + 12)² + (y − 12)²
= 1.
Find parametric equations for the line segment joining the first point to the second point.
(-6, -9,3) and (-9,4, -2)
The parametric equations are x =
0,
y =
Z=
for
Find parametric equations for the line shown: the x-axis
Let x = t.
The parametric equations are x_____, y_____, z______ (Type expressions using t as the variable.)
Chapter 8 Solutions
Algebra and Trigonometry
Ch. 8.1 - CONCEPTS We can describe the location of a point...Ch. 8.1 - Prob. 2ECh. 8.1 - Prob. 3ECh. 8.1 - Prob. 4ECh. 8.1 - Prob. 5ECh. 8.1 - Prob. 6ECh. 8.1 - SKILLS 5-10 Plotting Points in Polar Coordinates...Ch. 8.1 - Prob. 8ECh. 8.1 - Prob. 9ECh. 8.1 - Prob. 10E
Ch. 8.1 - Prob. 11ECh. 8.1 - Prob. 12ECh. 8.1 - SKILLS 11-16 Different Polar Coordinates for the...Ch. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - SKILLS 17-24 Points in Polar Coordinates...Ch. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - SKILLS 25-26 Rectangular Coordinates to Polar...Ch. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - 29-36 Polar Coordinates to Rectangular Coordinates...Ch. 8.1 - Prob. 32ECh. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - Prob. 35ECh. 8.1 - Prob. 36ECh. 8.1 - SKILLS 37-44 Rectangular Coordinates to Polar...Ch. 8.1 - Prob. 38ECh. 8.1 - Prob. 39ECh. 8.1 - Prob. 40ECh. 8.1 - Prob. 41ECh. 8.1 - Prob. 42ECh. 8.1 - 37-44 Rectangular Coordinates to Polar Coordinates...Ch. 8.1 - Prob. 44ECh. 8.1 - Prob. 45ECh. 8.1 - Prob. 46ECh. 8.1 - Prob. 47ECh. 8.1 - Prob. 48ECh. 8.1 - SKILLS 45-50 Rectangular equations to polar...Ch. 8.1 - Prob. 50ECh. 8.1 - Prob. 51ECh. 8.1 - Prob. 52ECh. 8.1 - Prob. 53ECh. 8.1 - Prob. 54ECh. 8.1 - SKILLS 51-70 Polar Equations to Rectangular...Ch. 8.1 - Prob. 56ECh. 8.1 - Prob. 57ECh. 8.1 - Prob. 58ECh. 8.1 - Prob. 59ECh. 8.1 - Prob. 60ECh. 8.1 - SKILLS 51-70 Polar Equations to Rectangular...Ch. 8.1 - Prob. 62ECh. 8.1 - Prob. 63ECh. 8.1 - Prob. 64ECh. 8.1 - Prob. 65ECh. 8.1 - Prob. 66ECh. 8.1 - SKILLS 51-70 Polar Equations to Rectangular...Ch. 8.1 - Prob. 68ECh. 8.1 - Prob. 69ECh. 8.1 - Prob. 70ECh. 8.1 - Prob. 71ECh. 8.1 - Prob. 72ECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - 17-22 Polar to Rectangular Sketch a graph of the...Ch. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - Prob. 27ECh. 8.2 - Prob. 28ECh. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Prob. 31ECh. 8.2 - Prob. 32ECh. 8.2 - Prob. 33ECh. 8.2 - Prob. 34ECh. 8.2 - Prob. 35ECh. 8.2 - Prob. 36ECh. 8.2 - Prob. 37ECh. 8.2 - Prob. 38ECh. 8.2 - Prob. 39ECh. 8.2 - Prob. 40ECh. 8.2 - Prob. 41ECh. 8.2 - Prob. 42ECh. 8.2 - 2346 Graphing Polar EquationsSketch a graph of the...Ch. 8.2 - Prob. 44ECh. 8.2 - Prob. 45ECh. 8.2 - Prob. 46ECh. 8.2 - Prob. 47ECh. 8.2 - Prob. 48ECh. 8.2 - Prob. 49ECh. 8.2 - Prob. 50ECh. 8.2 - Prob. 51ECh. 8.2 - Prob. 52ECh. 8.2 - Prob. 53ECh. 8.2 - Prob. 54ECh. 8.2 - Prob. 55ECh. 8.2 - Prob. 56ECh. 8.2 - Prob. 57ECh. 8.2 - Prob. 58ECh. 8.2 - Prob. 59ECh. 8.2 - Prob. 60ECh. 8.2 - Prob. 61ECh. 8.2 - Prob. 62ECh. 8.2 - Prob. 63ECh. 8.2 - Prob. 64ECh. 8.2 - Prob. 65ECh. 8.2 - Prob. 66ECh. 8.2 - DISCUSSDISCOVERPROVEWRITE DISCUSS: Choosing a...Ch. 8.3 - CONCEPTS A complex number z=a+bi has two parts: a...Ch. 8.3 - Prob. 2ECh. 8.3 - Prob. 3ECh. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - SKILLS 514 A Complex Number and Its Modulus Graph...Ch. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - SKILLS 514A Complex Number and Its Modulus Graph...Ch. 8.3 - Prob. 14ECh. 8.3 - SKILLS 15-16Graphing Complex Numbers. Sketch the...Ch. 8.3 - Prob. 16ECh. 8.3 - Prob. 17ECh. 8.3 - Prob. 18ECh. 8.3 - SKILLS 19-20Graphing Complex Numbers. Sketch the...Ch. 8.3 - Prob. 20ECh. 8.3 - Prob. 21ECh. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - 21-28 Graphing Sets of Complex Numbers Sketch the...Ch. 8.3 - 21-28 Graphing Sets of Complex Numbers Sketch the...Ch. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.3 - Prob. 28ECh. 8.3 - Prob. 29ECh. 8.3 - Prob. 30ECh. 8.3 - 2948 Polar Form of Complex Numbers Write the...Ch. 8.3 - Prob. 32ECh. 8.3 - Prob. 33ECh. 8.3 - Prob. 34ECh. 8.3 - Prob. 35ECh. 8.3 - Prob. 36ECh. 8.3 - 2948 Polar Form of Complex Numbers Write the...Ch. 8.3 - Prob. 38ECh. 8.3 - Prob. 39ECh. 8.3 - Prob. 40ECh. 8.3 - Prob. 41ECh. 8.3 - Prob. 42ECh. 8.3 - 2948 Polar Form of Complex Numbers Write the...Ch. 8.3 - Prob. 44ECh. 8.3 - Prob. 45ECh. 8.3 - Prob. 46ECh. 8.3 - Prob. 47ECh. 8.3 - Prob. 48ECh. 8.3 - SKILLS 49-56Product and Quotients of Complex...Ch. 8.3 - Prob. 50ECh. 8.3 - Prob. 51ECh. 8.3 - Prob. 52ECh. 8.3 - Prob. 53ECh. 8.3 - Prob. 54ECh. 8.3 - 49-56 Product and Quotients of Complex numbersFind...Ch. 8.3 - Prob. 56ECh. 8.3 - Prob. 57ECh. 8.3 - Prob. 58ECh. 8.3 - Prob. 59ECh. 8.3 - Prob. 60ECh. 8.3 - 57-64 Product and Quotients of Complex...Ch. 8.3 - Prob. 62ECh. 8.3 - Prob. 63ECh. 8.3 - Prob. 64ECh. 8.3 - Prob. 65ECh. 8.3 - Prob. 66ECh. 8.3 - SKILLS 65-76Powers Using De Moivres TheoremFind...Ch. 8.3 - SKILLS 65-76Powers Using De Moivres TheoremFind...Ch. 8.3 - Prob. 69ECh. 8.3 - Prob. 70ECh. 8.3 - Prob. 71ECh. 8.3 - Prob. 72ECh. 8.3 - SKILLS 65-76Powers Using De Moivres TheoremFind...Ch. 8.3 - Prob. 74ECh. 8.3 - Prob. 75ECh. 8.3 - Prob. 76ECh. 8.3 - Prob. 77ECh. 8.3 - Prob. 78ECh. 8.3 - SKILLS 77-86Roots of Complex NumbersFind the...Ch. 8.3 - Prob. 80ECh. 8.3 - Prob. 81ECh. 8.3 - 77-86Roots of Complex NumbersFind the indicated...Ch. 8.3 - Prob. 83ECh. 8.3 - Prob. 84ECh. 8.3 - 77-86 Roots of Complex NumbersFind the indicated...Ch. 8.3 - Prob. 86ECh. 8.3 - Prob. 87ECh. 8.3 - Prob. 88ECh. 8.3 - Prob. 89ECh. 8.3 - Prob. 90ECh. 8.3 - Prob. 91ECh. 8.3 - Prob. 92ECh. 8.3 - Prob. 93ECh. 8.3 - Prob. 94ECh. 8.3 - Prob. 95ECh. 8.3 - Prob. 96ECh. 8.3 - Prob. 97ECh. 8.3 - Prob. 98ECh. 8.3 - Prob. 99ECh. 8.3 - Prob. 100ECh. 8.3 - Prob. 101ECh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - Prob. 24ECh. 8.4 - Prob. 25ECh. 8.4 - Prob. 26ECh. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - Prob. 30ECh. 8.4 - Prob. 31ECh. 8.4 - Prob. 32ECh. 8.4 - Prob. 33ECh. 8.4 - Prob. 34ECh. 8.4 - Prob. 35ECh. 8.4 - Prob. 36ECh. 8.4 - Prob. 37ECh. 8.4 - Prob. 38ECh. 8.4 - Prob. 39ECh. 8.4 - Prob. 40ECh. 8.4 - Prob. 41ECh. 8.4 - Prob. 42ECh. 8.4 - Prob. 43ECh. 8.4 - Prob. 44ECh. 8.4 - Prob. 45ECh. 8.4 - Prob. 46ECh. 8.4 - Prob. 47ECh. 8.4 - Prob. 48ECh. 8.4 - Prob. 49ECh. 8.4 - Prob. 50ECh. 8.4 - Prob. 51ECh. 8.4 - Prob. 52ECh. 8.4 - Prob. 53ECh. 8.4 - Finding Parametric Equations for a Curve Two...Ch. 8.4 - Prob. 55ECh. 8.4 - Prob. 56ECh. 8.4 - Prob. 57ECh. 8.4 - Prob. 58ECh. 8.4 - Prob. 59ECh. 8.4 - Prob. 60ECh. 8.4 - Prob. 61ECh. 8.4 - Prob. 62ECh. 8.4 - Prob. 63ECh. 8.4 - Epicycloid If the circle C of Exercise 63 rolls on...Ch. 8.4 - Longbow CurveIn the following figure, the circle...Ch. 8.4 - Prob. 66ECh. 8.4 - Prob. 67ECh. 8.4 - Prob. 68ECh. 8.4 - Prob. 69ECh. 8.4 - Prob. 70ECh. 8.4 - Prob. 71ECh. 8.CR - Prob. 1CCCh. 8.CR - Prob. 2CCCh. 8.CR - Prob. 3CCCh. 8.CR - Prob. 4CCCh. 8.CR - a How do we express the complex number z in polar...Ch. 8.CR - Prob. 6CCCh. 8.CR - Prob. 7CCCh. 8.CR - Prob. 8CCCh. 8.CR - Prob. 9CCCh. 8.CR - Prob. 1ECh. 8.CR - Prob. 2ECh. 8.CR - Prob. 3ECh. 8.CR - Prob. 4ECh. 8.CR - Prob. 5ECh. 8.CR - Prob. 6ECh. 8.CR - Prob. 7ECh. 8.CR - Prob. 8ECh. 8.CR - Prob. 9ECh. 8.CR - Prob. 10ECh. 8.CR - Prob. 11ECh. 8.CR - Prob. 12ECh. 8.CR - Prob. 13ECh. 8.CR - Prob. 14ECh. 8.CR - Prob. 15ECh. 8.CR - Prob. 16ECh. 8.CR - Prob. 17ECh. 8.CR - Prob. 18ECh. 8.CR - Prob. 19ECh. 8.CR - Prob. 20ECh. 8.CR - Prob. 21ECh. 8.CR - Prob. 22ECh. 8.CR - Prob. 23ECh. 8.CR - Prob. 24ECh. 8.CR - Prob. 25ECh. 8.CR - Prob. 26ECh. 8.CR - Prob. 27ECh. 8.CR - Prob. 28ECh. 8.CR - Prob. 29ECh. 8.CR - Prob. 30ECh. 8.CR - Prob. 31ECh. 8.CR - Prob. 32ECh. 8.CR - Prob. 33ECh. 8.CR - Prob. 34ECh. 8.CR - Prob. 35ECh. 8.CR - Prob. 36ECh. 8.CR - Prob. 37ECh. 8.CR - Prob. 38ECh. 8.CR - Prob. 39ECh. 8.CR - Prob. 40ECh. 8.CR - Prob. 41ECh. 8.CR - Prob. 42ECh. 8.CR - Prob. 43ECh. 8.CR - Prob. 44ECh. 8.CR - Prob. 45ECh. 8.CR - Prob. 46ECh. 8.CR - Prob. 47ECh. 8.CR - Prob. 48ECh. 8.CR - Prob. 49ECh. 8.CT - Prob. 1CTCh. 8.CT - Prob. 2CTCh. 8.CT - Prob. 3CTCh. 8.CT - Prob. 4CTCh. 8.CT - Prob. 5CTCh. 8.CT - Find the cube roots of 27i, and sketch these roots...Ch. 8.CT - Prob. 7CTCh. 8.CT - Prob. 8CTCh. 8.CT - Prob. 9CTCh. 8.FOM - Trajectories Are Parabolas From the graphs in...Ch. 8.FOM - Path of a Baseball Suppose a baseball is thrown at...Ch. 8.FOM - Path of a Rocket Suppose that a rocket is fired at...Ch. 8.FOM - Firing a Missile The initial speed of a missile is...Ch. 8.FOM - Prob. 5PCh. 8.FOM - Shooting into the Wind Suppose that a projectile...Ch. 8.FOM - Shooting into the Wind Using the parametric...Ch. 8.FOM - Prob. 8P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.Similar questions
- Path of a Baseball Suppose a baseball is thrown at 30ft/s at a 60 angle to the horizontal from a height of 4 ft above the ground. a Find parametric equations for the path of the baseball, and sketch its graph. b How far does the baseball travel, and when does it hit the ground?arrow_forwardHuman Cannonball Graph the parametric equations in Example 5 and then find the maximum height of the cannonball, the maximum distance traveled horizontally, and the time at which the cannonball hits the net. (Assume the barrel of the cannon and the net are the same distance above the ground.)arrow_forwardA semielliptical arch over a tunnel for a one-way road through a mountain has a major axis of 50 feet and a height at the center of 10 feet. (a) Sketch the arch of the tunnel on a rectangular coordinate system with the center of the road entering the tunnel at the origin. Label the coordinates of the known points. (b) Find an equation of the semielliptical arch over the tunnel. (c) You are driving a moving truck that has a width of 8 feet and a height of 9 feet. Will the moving truck clear the opening of the arch?arrow_forward
- Epicycloid If the circle C of Exercise 63 rolls on the outside of the larger circle, the curve traced out by P is called an epicycloid. Find parametric equations for the epicycloid. Hypocycloid A circle C of radius b rolls on the inside of a larger circle of radius a centered at the origin. Let P be a fixed point on the smaller circle, with the initial position at the point (a,0) as shown in the figure. The curve traced out by P is called a hypocycloid. a Show that parametric equations of hypocycloid are x=(ab)cos+bcos(abb) y=(ab)sinbsin(abb) b If a=4b, the hypocycloid is called an asteroid. Show that in this case parametric equations can be reduced to x=acos3y=asin3 Sketch the curve. Eliminate the parameter to obtain an equation for the asteroid in rectangular coordinates.arrow_forwardUse the parameter to write parametric equations representing the given curve. Hyperbola with center (7, 2), vertices (0, 2) and (14, 2), and foci (-18, 2) and (32, 2). Ox=7+7tant and y = 2+24 sect Ox=2+7 sect and y = 7+24 tant Ox=2+7tant and y = 7+ 24 sect Ox=7+7 sect and y = 2+24 tantarrow_forwardA pair of parametric equations is given. x = e²t, y = e (a) Sketch the curve represented by the parametric equations. Use arrows to indicate the direction of the curve as t increases. y y 6 4 2 X X -6 -4 -2 2 4 6 -6 -4 4 + f y 6 4 2 X -6 -4 -2 2 4 6 -6 -4 -2 (b) Find a rectangular-coordinate equation for the curve by eliminating the parameter. where x > and y> O 2 2 2 4 6 6 Xarrow_forward
- Ellipses An ellipse is generated by the parametric equations x = a cos t, y = b sin t. If 0 < a < b, then the long axis (or major axis) lies on the y-axis and the short axis (or minor axis) lies on the x-axis. If 0 < b < a, the axes are reversed. The lengths of the axes in the x- and y-directions are 2a and 2b, respectively. Sketch the graph of the following ellipses.Specify an interval in t over which the entire curve is generated. x = 12 sin 2t, y = 3 cos 2tarrow_forwardParametric Equations – Basics 1. Consider the parametric equations x= 3t+2, y= 4-p² for t in the interval [-2,2]. a. Graph the parametric equations in rectangular XY coordinates, show direction. b. Determine the equivalent rectangular equation.arrow_forwardThe x- and y coordinates of a moving particle are given by the parametric equations below. Find the magnitude and direction of the velocity for the specific value of t. Sketch the curve and show the velocity and its components. x=4ty 4-t t=2 Find the magnitude of the velocity of the particle for the specific value of t The magnitude is approximately (Type an integer or decimal rounded to two decimal places as needed.) (arrow_forward
- Can someone help me answer this question it is the same problem .thank youarrow_forwardParametric Equations:- What information does a set of parametric equations provide that is lacking in a rectangular equation for describing the motion of an object?arrow_forwardThe equation below gives parametric equations and parameter intervals for the motion of a particle in the xy-plane. Identify the particle's path by finding a Cartesian equation for it. Graph the Cartesian equation Indicate the portion of the graph traced by the particle and the direction of motion. x = 5t - 3 y 25t2: - 0arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage Learning
Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning
Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781305652224
Author:Charles P. McKeague, Mark D. Turner
Publisher:Cengage Learning
What is Ellipse?; Author: Don't Memorise;https://www.youtube.com/watch?v=nzwCInIMlU4;License: Standard YouTube License, CC-BY