
Single Variable Calculus: Early Transcendentals
8th Edition
ISBN: 9781305270336
Author: James Stewart
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.4, Problem 14E
To determine
To calculate: The total revenue obtained in the first four years.
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
The parametric equations of the function are given asx=asin²0, y = acos). Calculate
[Let: a=anumerical coefficient]
dy
d²y
and
dx
dx2
A tank contains 200 gal of fresh water. A solution containing 4 lb/gal of soluble
lawn fertilizer runs into the tank at the rate of 1 gal/min, and the mixture is
pumped out of the tank at the rate of 5 gal/min. Find the maximum amount of
fertilizer in the tank and the time required to reach the maximum.
Find the time required to reach the maximum amount of fertilizer in the tank.
t=
min
(Type an integer or decimal rounded to the nearest tenth as needed.)
Thumbi Irrigation Scheme in Mzimba district is under threat of flooding. In order to
mitigate against the problem, authorities have decided to construct a flood protection
bund (Dyke). Figure 1 is a cross section of a 300m long proposed dyke; together with its
foundation (key). Survey data for the proposed site of the dyke are presented in Table 1.
Table 2 provides swelling and shrinkage factors for the fill material that has been
proposed. The dyke dimensions that are given are for a compacted fill.
(1) Assume you are in the design office, use both the Simpson Rule and Trapezoidal
Rule to compute the total volume of earthworks required. (Assume both the dyke
and the key will use the same material).
(2) If you are a Contractor, how many days will it take to finish hauling the computed
earthworks using 3 tippers of 12m³ each? Make appropriate assumptions.
DIKE CROSS SECTION
OGL
KEY (FOUNDATION)
2m
1m
2m
8m
Figure 1: Cross section of Dyke and its foundation
1.5m from highest OGL
0.5m…
Chapter 8 Solutions
Single Variable Calculus: Early Transcendentals
Ch. 8.1 - Use the arc length formula (3) to find the length...Ch. 8.1 - Prob. 2ECh. 8.1 - Set up an integral that represents the length of...Ch. 8.1 - Prob. 4ECh. 8.1 - Set up an integral that represents the length of...Ch. 8.1 - Prob. 6ECh. 8.1 - Prob. 7ECh. 8.1 - Set up an integral that represents the length of...Ch. 8.1 - Find the exact length of the curve. 9. y = 1 +...Ch. 8.1 - Find the exact length of the curve. 10. 36y2 = (x2...
Ch. 8.1 - Find the exact length of the curve. 11....Ch. 8.1 - Find the exact length of the curve. 12....Ch. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Find the exact length of the curve. 18....Ch. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Find the length of the arc of the curve from point...Ch. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Sketch the curve with equation x2/3 + y2/3 = 1 and...Ch. 8.1 - Prob. 34ECh. 8.1 - Prob. 35ECh. 8.1 - (a) Find the arc length function for the curve y =...Ch. 8.1 - Find the arc length function for the curve...Ch. 8.1 - The arc length function for a curve y = f(x),...Ch. 8.1 - Prob. 39ECh. 8.1 - Prob. 40ECh. 8.1 - A hawk flying at 15 m/s at an altitude of 180 m...Ch. 8.1 - Prob. 42ECh. 8.1 - A manufacturer of corrugated metal roofing wants...Ch. 8.1 - (a) The figure shows a telephone wire hanging...Ch. 8.1 - Prob. 45ECh. 8.1 - The curves with equations x + y = l , n = 4, 6, 8,...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - Prob. 5ECh. 8.2 - (a) Set up an integral for the area of the surface...Ch. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Find the exact area of the surface obtained by...Ch. 8.2 - Prob. 15ECh. 8.2 - The given curve is rotated about the y-axis. Find...Ch. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 27ECh. 8.2 - Prob. 28ECh. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Prob. 31ECh. 8.2 - Prob. 32ECh. 8.2 - If the curve y = f(x), a x b, is rotated about...Ch. 8.2 - Find the area of the surface obtained by rotating...Ch. 8.2 - (a) Show that the surface area of a zone of a...Ch. 8.2 - Prob. 37ECh. 8.2 - Prob. 38ECh. 8.2 - Formula 4 is valid only when f(x) 0. Show that...Ch. 8.3 - An aquarium 5 ft long, 2 ft wide, and 3 ft deep is...Ch. 8.3 - Prob. 2ECh. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - A vertical plate is submerged (or partially...Ch. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - A trough is filled with a liquid of density 840...Ch. 8.3 - A vertical dam has a semicircular gate as shown in...Ch. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - A swimming pool is 20 ft wide and 40 ft long and...Ch. 8.3 - Prob. 18ECh. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - Point-masses mi are located on the x-axis as...Ch. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - Prob. 24ECh. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.3 - Prob. 28ECh. 8.3 - Prob. 29ECh. 8.3 - Prob. 30ECh. 8.3 - Prob. 31ECh. 8.3 - Prob. 32ECh. 8.3 - Find the centroid of the region bounded by the...Ch. 8.3 - Calculate the moments Mx and My and the center of...Ch. 8.3 - Calculate the moments Mx and My and the center of...Ch. 8.3 - Prob. 36ECh. 8.3 - Prob. 37ECh. 8.3 - Prob. 38ECh. 8.3 - Prob. 39ECh. 8.3 - Prob. 40ECh. 8.3 - Prob. 41ECh. 8.3 - Prob. 42ECh. 8.3 - Prob. 43ECh. 8.3 - Use the Theorem of Pappus to find the volume of...Ch. 8.3 - Prob. 45ECh. 8.3 - Prob. 46ECh. 8.3 - Prob. 47ECh. 8.3 - Prob. 48ECh. 8.3 - Use the Second Theorem of Pappus described in...Ch. 8.3 - Prob. 50ECh. 8.3 - Prob. 51ECh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - If a supply curve is modeled by the equation p =...Ch. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.5 - Prob. 1ECh. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.5 - Let f(x) = k (3x x2) if 0 x 3 and f(x) = 0 if x...Ch. 8.5 - Prob. 7ECh. 8.5 - Prob. 8ECh. 8.5 - Prob. 9ECh. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - REM sleep is the phase of sleep when most active...Ch. 8.5 - Prob. 14ECh. 8.5 - The Garbage Project at the University of Arizona...Ch. 8.5 - Prob. 16ECh. 8.5 - The speeds of vehicles on a highway with speed...Ch. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - The standard deviation for a random variable with...Ch. 8.5 - Prob. 21ECh. 8 - (a) How is the length of a curve defined? (b)...Ch. 8 - Prob. 2RCCCh. 8 - Describe how we can find the hydrostatic force...Ch. 8 - (a) What is the physical significance of the...Ch. 8 - Prob. 5RCCCh. 8 - Prob. 6RCCCh. 8 - Prob. 7RCCCh. 8 - Prob. 8RCCCh. 8 - Prob. 9RCCCh. 8 - Prob. 10RCCCh. 8 - Prob. 1RECh. 8 - Prob. 2RECh. 8 - Prob. 3RECh. 8 - Prob. 4RECh. 8 - Prob. 5RECh. 8 - Prob. 6RECh. 8 - Prob. 7RECh. 8 - Prob. 8RECh. 8 - Prob. 9RECh. 8 - Prob. 10RECh. 8 - A gate in an irrigation canal is constructed in...Ch. 8 - A trough is filled with water and its vertical...Ch. 8 - Find the centroid of the region shown. 13.Ch. 8 - Prob. 14RECh. 8 - Prob. 15RECh. 8 - Prob. 16RECh. 8 - Prob. 17RECh. 8 - Prob. 18RECh. 8 - Prob. 19RECh. 8 - Prob. 20RECh. 8 - Prob. 21RECh. 8 - Prob. 22RECh. 8 - Prob. 23RECh. 8 - Prob. 1PCh. 8 - Prob. 2PCh. 8 - Prob. 3PCh. 8 - (a) Show that an observer at height H above the...Ch. 8 - Prob. 5PCh. 8 - Prob. 6PCh. 8 - Prob. 7PCh. 8 - Prob. 8PCh. 8 - Prob. 9PCh. 8 - Prob. 10PCh. 8 - Prob. 11PCh. 8 - Prob. 12PCh. 8 - Prob. 13P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- The parametric equations of the function are given as x = 3cos 0 - sin³0 and y = 3sin 0 - cos³0. dy d2y Calculate and dx dx².arrow_forward(10 points) Let f(x, y, z) = ze²²+y². Let E = {(x, y, z) | x² + y² ≤ 4,2 ≤ z ≤ 3}. Calculate the integral f(x, y, z) dv. Earrow_forward(12 points) Let E={(x, y, z)|x²+ y² + z² ≤ 4, x, y, z > 0}. (a) (4 points) Describe the region E using spherical coordinates, that is, find p, 0, and such that (x, y, z) (psin cos 0, psin sin 0, p cos) € E. (b) (8 points) Calculate the integral E xyz dV using spherical coordinates.arrow_forward
- (10 points) Let f(x, y, z) = ze²²+y². Let E = {(x, y, z) | x² + y² ≤ 4,2 ≤ z < 3}. Calculate the integral y, f(x, y, z) dV.arrow_forward(14 points) Let f: R3 R and T: R3. →R³ be defined by f(x, y, z) = ln(x²+ y²+2²), T(p, 0,4)=(psin cos 0, psin sin, pcos). (a) (4 points) Write out the composition g(p, 0, 4) = (foT)(p,, ) explicitly. Then calculate the gradient Vg directly, i.e. without using the chain rule. (b) (4 points) Calculate the gradient Vf(x, y, z) where (x, y, z) = T(p, 0,4). (c) (6 points) Calculate the derivative matrix DT(p, 0, p). Then use the Chain Rule to calculate Vg(r,0,4).arrow_forward(10 points) Let S be the upper hemisphere of the unit sphere x² + y²+2² = 1. Let F(x, y, z) = (x, y, z). Calculate the surface integral J F F-dS. Sarrow_forward
- (8 points) Calculate the following line integrals. (a) (4 points) F Fds where F(x, y, z) = (x, y, xy) and c(t) = (cost, sint, t), tЄ [0,π] . (b) (4 points) F. Fds where F(x, y, z) = (√xy, e³, xz) where c(t) = (t², t², t), t = [0, 1] .arrow_forwardreview help please and thank you!arrow_forward(10 points) Let S be the surface that is part of the sphere x² + y²+z² = 4 lying below the plane 2√3 and above the plane z-v -√3. Calculate the surface area of S.arrow_forward
- (8 points) Let D = {(x, y) | 0 ≤ x² + y² ≤4}. Calculate == (x² + y²)³/2dA by making a change of variables to polar coordinates, i.e. x=rcos 0, y = r sin 0.arrow_forwardx² - y² (10 points) Let f(x,y): = (a) (6 points) For each vector u = (1, 2), calculate the directional derivative Duƒ(1,1). (b) (4 points) Determine all unit vectors u for which Duf(1, 1) = 0.arrow_forwardSolve : X + sin x = 0. By the false positioning numerical methodarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageCollege Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage Learning

Algebra and Trigonometry (MindTap Course List)
Algebra
ISBN:9781305071742
Author:James Stewart, Lothar Redlin, Saleem Watson
Publisher:Cengage Learning

Trigonometry (MindTap Course List)
Trigonometry
ISBN:9781337278461
Author:Ron Larson
Publisher:Cengage Learning


Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage

College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Use of ALGEBRA in REAL LIFE; Author: Fast and Easy Maths !;https://www.youtube.com/watch?v=9_PbWFpvkDc;License: Standard YouTube License, CC-BY
Compound Interest Formula Explained, Investment, Monthly & Continuously, Word Problems, Algebra; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=P182Abv3fOk;License: Standard YouTube License, CC-BY
Applications of Algebra (Digit, Age, Work, Clock, Mixture and Rate Problems); Author: EngineerProf PH;https://www.youtube.com/watch?v=Y8aJ_wYCS2g;License: Standard YouTube License, CC-BY