BEGINNING STAT.-SOFTWARE+EBOOK ACCESS
BEGINNING STAT.-SOFTWARE+EBOOK ACCESS
2nd Edition
ISBN: 9781941552506
Author: WARREN
Publisher: HAWKES LRN
Question
Book Icon
Chapter 8.3, Problem 14E
To determine

To find:

A 99% confidence interval for the mean

Expert Solution & Answer
Check Mark

Answer to Problem 14E

Solution:

A 99% confidence interval for the mean face amount of an individual life insurance policy is in the interval, (165852.02,177665.22).

Explanation of Solution

Approach:

Given a sample with standard deviation s, while estimating a population parameter, it is better to consider a range of values using samples of the same size (say n), also known as an interval estimate.

The true population parameters probability lies in this interval range which is known as the confidence level (c=1α).

At a certain level of confidence, the interval in which the maximum error can be observed is known as the confidence interval.

Estimating parameters of a large population or a population following normal distribution is done using the Student’s t-distribution to calculate the margin of error for mean of the population when its standard deviation is not known.

The t-distribution is described by only one measure that is the degrees of freedom, with the area under the tails decreasing with higher degrees of freedom, eventually matching the standard normal distribution when degrees of freedom is infinitely many.

The degrees of freedom is the attribute used to obtain the appropriate curve for the t-distribution.

BEGINNING STAT.-SOFTWARE+EBOOK ACCESS, Chapter 8.3, Problem 14E

The value of t such that there is an area of α2 to the left of t and an area of α2 to the right of t is denoted by tα2 as depicted above.

Hence this is a case of two-tailed t-distribution.

The maximum distance from point estimate that the confidence interval covers is margin of error and is given by:

E=tα2×sn,

Given the sample mean (x¯), the population mean confidence interval is calculated as:

(x¯E,x¯+E).

Calculation:

The sample means is given by:

x¯=i=1nXin1

Substituting the values of life insurance policies in the formula above

x¯=(150000+150000+1500000+1500000+1500000+150000+151000+152000+152000+153000+153000+154000+155000+158000+159000+159000+160000+160000+160000+162000+163000+163000+163000+163000+165000+165000+168000+168000+168000+171000+171000+172000+172000+172000+173000+174000+175000+175000+175000+176000+182000+182000+183000+185000+185000+190000+190000+195000+195000+195000+196000+200000+200000+200000+200000+202000+202000)58=996200058x¯=171758.62

xi x- xi-x (xi-x)2
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
150, 000 171758.62 -21, 758.62 473437544.3
151, 000 171758.62 -20, 758.62 430920304.3
152, 000 171758.62 -19, 758.62 390403064.3
152, 000 171758.62 -19, 758.62 390403064.3
153, 000 171758.62 -18, 758.62 351885824.3
153, 000 171758.62 -18, 758.62 351885824.3
154, 000 171758.62 -17, 758.62 315368584.3
155, 000 171758.62 -16, 758.62 280851344.3
158, 000 171758.62 -13, 758.62 189299624.3
158, 000 171758.62 -12, 758.62 162782384.3
158, 000 171758.62 -12, 758.62 162782384.3
160, 000 171758.62 -11, 758.62 138265144.3
160, 000 171758.62 -11, 758.62 138265144.3
160, 000 171758.62 -11, 758.62 138265144.3
162, 000 171758.62 -9, 758.62 95230664.3
163, 000 171758.62 -8, 758.62 76713424.3
163, 000 171758.62 -8, 758.62 76713424.3
163, 000 171758.62 -8, 758.62 76713424.3
165, 000 171758.62 -6, 758.62 45678944.3
165, 000 171758.62 -6, 758.62 45678944.3
168, 000 171758.62 -3, 758.62 14127224.3
168, 000 171758.62 -3, 758.62 14127224.3
168, 000 171758.62 -3, 758.62 14127224.3
171, 000 171758.62 -758.62 575504.3044
171, 000 171758.62 -758.62 575504.3044
172, 000 171758.62 241.38 58264.3044
172, 000 171758.62 241.38 58264.3044
172, 000 171758.62 241.38 58264.3044
173, 000 171758.62 1, 241.38 1541024.304
174, 000 171758.62 2, 241.38 5023784.304
175, 000 171758.62 3, 241.38 10506544.3
175, 000 171758.62 3, 241.38 10506544.3
175, 000 171758.62 3, 241.38 10506544.3
176, 000 171758.62 4, 241.38 17989304.3
182, 000 171758.62 10, 241.38 104885864.3
182, 000 171758.62 10, 241.38 104885864.3
183, 000 171758.62 11, 241.38 126368624.3
185, 000 171758.62 13, 241.38 175334144.3
185, 000 171758.62 13, 241.38 175334144.3
190, 000 171758.62 18, 241.38 332747944.3
190, 000 171758.62 18, 241.38 332747944.3
195, 000 171758.62 23, 241.38 540161744.3
195, 000 171758.62 23, 241.38 540161744.3
195, 000 171758.62 23, 241.38 540161744.3
196, 000 171758.62 24, 241.38 587644504.3
200, 000 171758.62 28, 241.38 797575544.3
200, 000 171758.62 28, 241.38 797575544.3
200, 000 171758.62 28, 241.38 797575544.3
200, 000 171758.62 28, 241.38 797575544.3
200, 000 171758.62 28, 241.38 797575544.3
202, 000 171758.62 30, 241.38 914541064.3
202, 000 171758.62 30, 241.38 914541064.3
163, 000 171758.62 -8, 758.62 76713424.3

Form the above table we get,

i=1n(xix¯)2=16252620690

Now the standard division is,

S=i=1n(xix¯)2n1S=1625262069057S=16885.9

Level of confidence is 99%

c=0.99

Where α2 is calculated as:

α2=(1c)2=(10.99)2=0.005

Critical t value at α2=0.005 using t table and degree of freedom as (581=57) is 2.664.

Now substitute these values in margin of error.

Then, the margin of error is calculated as:

E=tα2×sn=2.664×16885.958=5906.69

Then, interval is:

(x¯E,x¯+E)=(171758.625906.69,171758.62+5906.69)(165852.02,177665.22)

Conclusion:

A 95% confidence interval for the mean fastball pitching speed of all high school is in the interval (165852.02,177665.22).

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A population that is uniformly distributed between a=0and b=10 is given in sample sizes ​50(   ​), ​100(   ​), ​250(   ​), and ​500(   ​). Find the sample mean and the sample standard deviations for the given data. Compare your results to the average of means for a sample of size​ 10, and use the empirical rules to analyze the sampling error. For each​ sample, also find the standard error of the mean using formula given below.   Standard Error of the Mean =sigma/Root  Complete the following table with the results from the sampling experiment. ​(Round to four decimal places as​ needed.) Sample Size Average of 8 Sample Means Standard Deviation of 8 Sample Means Standard Error 50       100       250       500
A survey of 250250 young professionals found that two dash thirdstwo-thirds of them use their cell phones primarily for​ e-mail. Can you conclude statistically that the population proportion who use cell phones primarily for​ e-mail is less than 0.720.72​? Use a​ 95% confidence interval.       Question content area bottom Part 1 The​ 95% confidence interval is left bracket nothing comma nothing right bracket0.60820.6082, 0.72510.7251. As 0.720.72 is within the limits   of the confidence​ interval, we cannot   conclude that the population proportion is less than 0.720.72. ​(Use ascending order. Round to four decimal places as​ needed.)
I need help with this problem and an explanation of the solution for the image described below. (Statistics: Engineering Probabilities)

Chapter 8 Solutions

BEGINNING STAT.-SOFTWARE+EBOOK ACCESS

Ch. 8.1 - Prob. 11ECh. 8.1 - Prob. 12ECh. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Prob. 31ECh. 8.1 - Prob. 32ECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Prob. 3ECh. 8.2 - Prob. 4ECh. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - Prob. 8ECh. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - Prob. 11ECh. 8.2 - Prob. 12ECh. 8.2 - Prob. 13ECh. 8.2 - Prob. 14ECh. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prob. 17ECh. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.3 - Prob. 1ECh. 8.3 - Prob. 2ECh. 8.3 - Prob. 3ECh. 8.3 - Prob. 4ECh. 8.3 - Prob. 5ECh. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Prob. 10ECh. 8.3 - Prob. 11ECh. 8.3 - Prob. 12ECh. 8.3 - Prob. 13ECh. 8.3 - Prob. 14ECh. 8.3 - Prob. 15ECh. 8.3 - Prob. 16ECh. 8.3 - Prob. 17ECh. 8.3 - Prob. 18ECh. 8.3 - Prob. 19ECh. 8.3 - Prob. 20ECh. 8.3 - Prob. 21ECh. 8.3 - Prob. 22ECh. 8.3 - Prob. 23ECh. 8.3 - Prob. 24ECh. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Prob. 27ECh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - Prob. 9ECh. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - Prob. 15ECh. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - Prob. 18ECh. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.5 - Prob. 1ECh. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.5 - Prob. 6ECh. 8.5 - Prob. 7ECh. 8.5 - Prob. 8ECh. 8.5 - Prob. 9ECh. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - Prob. 13ECh. 8.5 - Prob. 14ECh. 8.5 - Prob. 15ECh. 8.5 - Prob. 16ECh. 8.5 - Prob. 17ECh. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Prob. 25ECh. 8.5 - Prob. 26ECh. 8.5 - Prob. 27ECh. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.CR - Prob. 1CRCh. 8.CR - Prob. 2CRCh. 8.CR - Prob. 3CRCh. 8.CR - Prob. 4CRCh. 8.CR - Prob. 5CRCh. 8.CR - Prob. 6CRCh. 8.CR - Prob. 7CRCh. 8.CR - Prob. 8CRCh. 8.CR - Prob. 9CRCh. 8.CR - Prob. 10CRCh. 8.CR - Prob. 11CRCh. 8.CR - Prob. 12CRCh. 8.CR - Prob. 13CRCh. 8.PA - Prob. 1PCh. 8.PA - Prob. 2PCh. 8.PA - Prob. 3PCh. 8.PA - Prob. 4PCh. 8.PA - Prob. 5PCh. 8.PB - Prob. 1PCh. 8.PB - Prob. 2PCh. 8.PB - Prob. 3PCh. 8.PB - Prob. 4PCh. 8.PB - Prob. 5P
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman