DIFFERENTIAL EQUATIONS-NEXTGEN WILEYPLUS
DIFFERENTIAL EQUATIONS-NEXTGEN WILEYPLUS
3rd Edition
ISBN: 9781119764564
Author: BRANNAN
Publisher: WILEY
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 8.3, Problem 11P

In each of Problem 7 through 12, find approximate value of the solution of the given initial value problem at t = 0.5 , 1.0 , 1.5 , and2 .0 .

a) Use the improved Euler method with h = 0.025 .

b) Use the improved Euler method with h = 0.0125 .

c) Use the Runge-Kutta method with h = 0.1 .

d) Use the Runge-Kutta method with h = 0.05 .

y ' = ( 4 t y ) / ( 1 + y 2 ) , y ( 0 ) = 2

Blurred answer
Students have asked these similar questions
Use a graph of f to estimate lim f(x) or to show that the limit does not exist. Evaluate f(x) near x = a to support your conjecture. Complete parts (a) and (b). x-a f(x)= 1 - cos (4x-4) 3(x-1)² ; a = 1 a. Use a graphing utility to graph f. Select the correct graph below.. A. W → ✓ Each graph is displayed in a [- 1,3] by [0,5] window. B. in ✓ ○ C. und ☑ Use the graphing utility to estimate lim f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x-1 ○ A. The limit appears to be approximately ☐ . (Round to the nearest tenth as needed.) B. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. X 0.9 0.99 0.999 1.001 1.01 1.1 f(x) ○ D. + ☑ (Round to six decimal places as needed.) Does the table from the previous step support your conjecture? A. No, it does not. The function f(x) approaches a different value in the table of values than in the graph, after the approached values are rounded to the…
x²-19x+90 Let f(x) = . Complete parts (a) through (c) below. x-a a. For what values of a, if any, does lim f(x) equal a finite number? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x→a+ ○ A. a= (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no values of a for which the limit equals a finite number. b. For what values of a, if any, does lim f(x) = ∞o? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. (Type integers or simplified fractions) C. There are no values of a that satisfy lim f(x) = ∞. + x-a c. For what values of a, if any, does lim f(x) = -∞0? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. Either a (Type integers or simplified fractions) B.
Sketch a possible graph of a function f, together with vertical asymptotes, that satisfies all of the following conditions. f(2)=0 f(4) is undefined lim f(x)=1 X-6 lim f(x) = -∞ x-0+ lim f(x) = ∞ lim f(x) = ∞ x-4 _8

Chapter 8 Solutions

DIFFERENTIAL EQUATIONS-NEXTGEN WILEYPLUS

Ch. 8.1 - In each of Problems 11 through 14 , use Eular’s...Ch. 8.1 - In each of Problems 11 through 14 , use Eular’s...Ch. 8.1 - In each of Problems 11 through 14 , use Eular’s...Ch. 8.1 - In each of Problems 11 through 14 , use Eular’s...Ch. 8.1 - Consider the initial value problem...Ch. 8.1 - Consider the initial value problem Use Euler’s...Ch. 8.1 - Consider the initial value problem...Ch. 8.1 - Consider the initial value problem Where is a...Ch. 8.1 - Consider the initial value problem y=y2t2,y(0)=,...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 1 through 6, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - In each of Problem 7 through 12, find approximate...Ch. 8.2 - Complete the calculations leading to the entries...Ch. 8.2 - Using three terms in the Taylor series given in...Ch. 8.2 - In each of Problems 15 and 16, estimate the local...Ch. 8.2 - In each of Problems 15 and 16, estimate the local...Ch. 8.2 - In each of Problems 17 and 20, obtain a formula...Ch. 8.2 - In each of Problems 17 and 20, obtain a formula...Ch. 8.2 - In each of Problems 17 and 20, obtain a formula...Ch. 8.2 - In each of Problems 17 and 20, obtain a formula...Ch. 8.2 - Consider the initial value problem y=cos5t,y(0)=1....Ch. 8.2 - Using a step size h=0.05 and the Euler method,...Ch. 8.2 - The following problem illustrates a danger that...Ch. 8.2 - The distributive law a(bc)=abac does not hold, in...Ch. 8.2 - In this section we stated that the global...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 1 through 6, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - In each of Problem 7 through 12, find approximate...Ch. 8.3 - Complete the calculation leading to the entries in...Ch. 8.3 - Confirm the results in Table 8.3.2 by executing...Ch. 8.3 - Consider the initial value problem y=t2+y2,y(0)=1....Ch. 8.3 - Consider the initial value problem Draw a...Ch. 8.3 - In this problem, we establish that the local...Ch. 8.3 - Consider the improved Euler method for solving the...Ch. 8.3 - In each of Problems 19 and 20, use the actual...Ch. 8.3 - In each of Problems 19 and 20, use the actual...Ch. 8.3 - In each of Problems 21 through 24, carry out one...Ch. 8.3 - In each of Problems 21 through 24, carry out one...Ch. 8.3 - In each of Problems 21 through 24, carry out one...Ch. 8.3 - In each of Problems 21 through 24, carry out one...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - In each of Problems 1 through 6, determine...Ch. 8.4 - Consider the example problemwith the initial...Ch. 8.4 - Consider the initial value problem...Ch. 8.P1 - Assume that the shape of the dispensers are...Ch. 8.P1 - After viewing the results of her computer...Ch. 8.P2 - Show that Euler’s method applied to the...Ch. 8.P2 - Simulate five sample trajectories of Eq. (1) for...Ch. 8.P2 - Use the differential equation (4) to generate an...Ch. 8.P2 - Variance Reduction by Antithetic Variates. A...
Knowledge Booster
Background pattern image
Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY