
Applied Physics (11th Edition)
11th Edition
ISBN: 9780134159386
Author: Dale Ewen, Neill Schurter, Erik Gundersen
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.2, Problem 9P
To determine
The time taken by the motor to raise a
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Truck suspensions often have "helper springs" that engage at high loads. One such arrangement is a leaf spring with a helper coil spring mounted on the axle, as shown in the figure below. When the main leaf spring is compressed by distance yo, the helper spring engages and then helps to
support any additional load. Suppose the leaf spring constant is 5.05 × 105 N/m, the helper spring constant is 3.50 × 105 N/m, and y = 0.500 m.
Truck body
yo
Main leaf
spring
-"Helper"
spring
Axle
(a) What is the compression of the leaf spring for a load of 6.00 × 105 N?
Your response differs from the correct answer by more than 10%. Double check your calculations. m
(b) How much work is done in compressing the springs?
☑
Your response differs significantly from the correct answer. Rework your solution from the beginning and check each step carefully. J
A spring is attached to an inclined plane as shown in the figure. A block of mass m = 2.71 kg is placed on the incline at a distance d = 0.285 m along the incline from the end of the spring. The block is given a quick shove and moves down the incline with an initial speed v = 0.750 m/s. The
incline angle is = 20.0°, the spring constant is k = 505 N/m, and we can assume the surface is frictionless. By what distance (in m) is the spring compressed when the block momentarily comes to rest?
m
m
0
k
wwww
A block of mass m = 2.50 kg situated on an incline at an angle of
k=100 N/m
www
50.0° is connected to a spring of negligible mass having a spring constant of 100 N/m (Fig. P8.54). The pulley and incline are frictionless. The block is released from rest with the spring initially unstretched.
Ө
m
i
(a) How far does it move down the frictionless incline before coming to rest?
m
(b) What is its acceleration at its lowest point?
Magnitude
m/s²
Direction
O up the incline
down the incline
Chapter 8 Solutions
Applied Physics (11th Edition)
Ch. 8.1 - Given: F = 10.0 N s = 3.43 m W = ?Ch. 8.1 - Given: F = 125 N s = 4875 m W = ?Ch. 8.1 - Given: F = 1850 N s = 625 m = 37.5 W = ?Ch. 8.1 - Given: W = 697 ft lb s = 976 ft F = ?Ch. 8.1 - Given: F = 25,700 N s = 238 m W = 5.57 106 J = ?Ch. 8.1 - Given: F = ma m = 16.0 kg a = 9.80 m/s2 s = 13.0 m...Ch. 8.1 - How much work is required for a mechanical hoist...Ch. 8.1 - A hay wagon is used to move bales from the field...Ch. 8.1 - A worker lifts 75 concrete blocks a distance of...Ch. 8.1 - The work required to lift eleven 94.0-lb bags of...
Ch. 8.1 - How much work is done in lifting 450 lb of cement...Ch. 8.1 - How much work is done lifting a 200-kg wrecking...Ch. 8.1 - A gardener pushes a mower a distance of 900 m m in...Ch. 8.1 - A traveler is pulling a suitcase at an angle 40.0...Ch. 8.1 - A crate is pulled 675 ft across a warehouse floor...Ch. 8.1 - A man pulls a sled a distance of 231 m. The rope...Ch. 8.1 - A tractor tows a barge through a canal with a...Ch. 8.1 - Two tractors tow a barge through a canal; each...Ch. 8.1 - Two students push a dune buggy 35.0 m across a...Ch. 8.1 - After a rain, the force necessary to push the dune...Ch. 8.1 - A delivery person carries a 215-N box up stairs...Ch. 8.1 - A crate is pulled by a force of 628 N across the...Ch. 8.1 - A laborer pushes a wheelbarrow weighing 200 N at...Ch. 8.1 - An end loader lifts a 1000-N bucket of gravel 1.75...Ch. 8.2 - Given: W = 132 J t = 7.00 s p = ?Ch. 8.2 - t = 14.3s W = ? Given: P = 75.0 WCh. 8.2 - Given: P = 75.0 W W = 40.0 J t = ?Ch. 8.2 - Given; W = 55.0 J t = 11.0s p = ?Ch. 8.2 - The work required to lift a crate is 310 J. If the...Ch. 8.2 - When a 3600-lb automobile runs out of gas, it is...Ch. 8.2 - An electric golf cart develops 1.25 kW of power...Ch. 8.2 - How many seconds would it take a 7.00-hp motor to...Ch. 8.2 - Prob. 9PCh. 8.2 - A 1500-lb casting is raised 22 0 ft in 2.50 min....Ch. 8.2 - Prob. 11PCh. 8.2 - A wattmeter shows that a motor is drawing 2200 W....Ch. 8.2 - A 525-kg steel beam is raised 30.0 m in 25.0 s....Ch. 8.2 - How long would it take a 4.50-kW motor to raise a...Ch. 8.2 - A 475-kg pre-stressed concrete beam is to be...Ch. 8.2 - A 50.0-kg welder is to be raised 15.0 m in 12.0 s....Ch. 8.2 - An escalator is needed to carry 75 passengers per...Ch. 8.2 - A pump is needed to lift 750 L of water per minute...Ch. 8.2 - A machine is designed to perform a given amount of...Ch. 8.2 - A certain machine is designed to perform a given...Ch. 8.2 - A motor on an escalator is capable of developing...Ch. 8.2 - A pump is capable of developing 4.00 kW of power....Ch. 8.2 - A pallet weighing 575 N is lifted a distance of...Ch. 8.2 - A pallet is loaded with bags of cement; the total...Ch. 8.2 - A bundle of steel reinforcing rods weighing 175 N...Ch. 8.2 - An ironworker carries a 7.50-kg toolbag up a...Ch. 8.3 - Given: m = 11.4 kg g = 9.80m/s2 h = 22.0m Ep = ?Ch. 8.3 - Given: m = 3.50 kg g = 9.80 m/s2 h = 15.0 m Ep = ?Ch. 8.3 - Given: m = 4.70 kg = 9.60 m/s Ek = ?Ch. 8.3 - Given: Ep = 93.6 J g = 9.80m/s2 m = 2.30kg h = ?Ch. 8.3 - A truck with mass 950 siugs is driven 55.0 mi/h....Ch. 8.3 - A bullet with mass 12.0 g travels 415 m/s. Find...Ch. 8.3 - A bicycle and rider together have a mass of 7.40...Ch. 8.3 - A crate of mass 475 kg is raised to a height 17.0...Ch. 8.3 - A tank of water containing 2500 L of water is...Ch. 8.3 - The potential energy of a girder, after being...Ch. 8.3 - A 30.0-g bullet is fired from a gun and possesses...Ch. 8.3 - The Hoover Dam is 726 ft high. Find the potential...Ch. 8.3 - A 250-kg part falls from a plane and hits the...Ch. 8.3 - Prob. 14PCh. 8.3 - Water is pumped at 250 m3/min from a lake into a...Ch. 8.3 - Oil is pumped at 25.0 m3/min into a tank 10.0 m...Ch. 8.3 - Prob. 17PCh. 8.3 - If the kinetic energy of an object is doubled, by...Ch. 8.3 - A 4.20-g slug is shot from a rifle at 965 m/s. (a)...Ch. 8.3 - A window washer with mass 90.0 Kg first climbs...Ch. 8.3 - A painter weighing 630 N climbs to a height of...Ch. 8.4 - A pile driver falls a distance of 2.50 m before...Ch. 8.4 - A sky diver jumps out of a plane at a height of...Ch. 8.4 - A piece of shattered glass falls from the 82nd...Ch. 8.4 - A 10.0-kg mass is dropped from a hot air balloon...Ch. 8.4 - A 0.175-lb ball is thrown upward with an initial...Ch. 8.4 - A pile driver falls a distance of 1.75 m before...Ch. 8.4 - A sandbag is dropped from a hot air balloon at a...Ch. 8.4 - An ironworker drops a hammer 5.25 m to the ground....Ch. 8.4 - A box is dropped 3.60 m to the ground. What is its...Ch. 8.4 - A piece of broken glass with mass 15.0 kg falls...Ch. 8.4 - A ball is thrown downward from the top of a...Ch. 8.4 - Find the maximum height reached by a ball thrown...Ch. 8.4 - A 4,000-kg mass is dropped from a hot air balloon...Ch. 8.4 - A 2.00-kg projectile is fired vertically upward...Ch. 8 - Work is done when a. a force is applied. b. a...Ch. 8 - Power (a) is work divided by time. (b) is measured...Ch. 8 - A large boulder at rest possesses (a) potential...Ch. 8 - A large boulder rolling down a hill possesses (a)...Ch. 8 - With no sir resistance and no friction, a pendulum...Ch. 8 - Can work be done by a moving object on itself?Ch. 8 - Develop the units associated with work from the...Ch. 8 - Is work a vector quantity?Ch. 8 - Is work being done on a boulder by gravity?Ch. 8 - Is work being done by the weight of a grandfather...Ch. 8 - How could the power developed by a man pushing a...Ch. 8 - How does water above a waterfall possess potential...Ch. 8 - What are two devices possessing gravitational...Ch. 8 - Is kinetic energy dependent on time?Ch. 8 - At what point is the kinetic energy of a swinging...Ch. 8 - At what point is the potential energy of a...Ch. 8 - Is either kinetic or potential energy a vector...Ch. 8 - Can an object possess both kinetic and potential...Ch. 8 - Why is a person more likely to be severely injured...Ch. 8 - How many joules are in one kilowatt-hour?Ch. 8 - An endloader holds 1500 kg of sand 2.00 m off the...Ch. 8 - How high can a 10.0-Kg mass be lifted by 1000 J of...Ch. 8 - A 40.0-kg pack is carried up a 2500-m-high...Ch. 8 - Find the average power output in Problem 4 in (a)...Ch. 8 - A 10.0-kg mass lias a potential energy of 10.0 J...Ch. 8 - A 10.0-lb weight has a potential energy of 20.0 ft...Ch. 8 - At what speed does a 1.00-kg mass have a kinetic...Ch. 8 - At what speed does a 10.0-N weight have a kinetic...Ch. 8 - What is the kinetic energy of a 3000-lb automobile...Ch. 8 - What is the potential energy of an 80.0-kg diver...Ch. 8 - What is the kinetic energy of a 0.020-kg bullet...Ch. 8 - What is the potential energy of an 85.o-kg high...Ch. 8 - A worker pulls a crate 10.0 m by exerting a force...Ch. 8 - A hammer falls from a scaffold on a building 50.0...Ch. 8 - Rosita needs to purchase a sump pump for her...Ch. 8 - A roller coaster designer must carefully balance...Ch. 8 - A 22,500-kg Navy fighter jet flying 235 km/h must...Ch. 8 - The hydroelectric plant at the Itaipu Dam, located...Ch. 8 - A 1250-kg wrecking ball is lifted to a height of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) A 15.0 kg block is released from rest at point A in the figure below. The track is frictionless except for the portion between points B and C, which has a length of 6.00 m. The block travels down the track, hits a spring of force constant 2,100 N/m, and compresses the spring 0.250 m from its equilibrium position before coming to rest momentarily. Determine the coefficient of kinetic friction between the block and the rough surface between points B and C. -A 3.00 m B C -6.00 m i (b) What If? The spring now expands, forcing the block back to the left. Does the block reach point B? Yes No If the block does reach point B, how far up the curved portion of the track does it reach, and if it does not, how far short of point B does the block come to a stop? (Enter your answer in m.) marrow_forwardA ball of mass m = 1.95 kg is released from rest at a height h = 57.0 cm above a light vertical spring of force constant k as in Figure [a] shown below. The ball strikes the top of the spring and compresses it a distance d = 7.80 cm as in Figure [b] shown below. Neglecting any energy losses during the collision, find the following. т m a d T m b i (a) Find the speed of the ball just as it touches the spring. 3.34 m/s (b) Find the force constant of the spring. Your response differs from the correct answer by more than 10%. Double check your calculations. kN/marrow_forwardI need help with questions 1-10 on my solubility curve practice sheet. I tried to my best ability on the answers, however, i believe they are wrong and I would like to know which ones a wrong and just need help figuring it out.arrow_forward
- Question: For a liquid with typical values a = 10-3K-¹ K = 10-4 bar-1 V=50 cm³ mol-1, Cp 200 J mol-1K-1, calculate the following quantities at 300 K and 1 bar for one mole of gas: 1. () P ән 2. (9) T 3. (V) T 4. (1) P 5. (9) T 6. Cv 7. (OF)Tarrow_forwardA,B,C AND Darrow_forwardA bungee jumper plans to bungee jump from a bridge 64.0 m above the ground. He plans to use a uniform elastic cord, tied to a harness around his body, to stop his fall at a point 6.00 m above the water. Model his body as a particle and the cord as having negligible mass and obeying Hooke's law. In a preliminary test he finds that when hanging at rest from a 5.00 m length of the cord, his body weight stretches it by 1.55 m. He will drop from rest at the point where the top end of a longer section of the cord is attached to the bridge. (a) What length of cord should he use? Use subscripts 1 and 2 respectively to represent the 5.00 m test length and the actual jump length. Use Hooke's law F = KAL and the fact that the change in length AL for a given force is proportional the length L (AL = CL), to determine the force constant for the test case and for the jump case. Use conservation of mechanical energy to determine the length of the rope. m (b) What maximum acceleration will he…arrow_forward
- 210. Sometimes the Helmholtz free energy F(T, V, N) divided by temperature, T, is an interesting quantity. For example, the quantity is proportional to the logarithm of the equilibrium constant or solubilities. A. Derive a relationship showing that Find the constant of proportionality. a F αυ ƏT T B. Suppose F(T) depends on temperature in the following way: F(T)=2aT²+bT. Find S(T) and U(T).arrow_forwardchoosing East (e) is not correct!arrow_forwarddisks have planes that are parallel and centered Three polarizing On a common axis. The direction of the transmission axis Colish dashed line) in each case is shown relative to the common vertical direction. A polarized beam of light (with its axis of polarization parallel to the horizontal reference direction) is incident from the left on the first disk with int intensity So = 790 W/m². Calculate the transmitted intensity if 81=28.0° O2-35.0°, and O3 = 40.0° w/m² horizontal Өз 02arrow_forward
- A polarized light is incident on several polarizing disks whose planes are parallel and centered on common axis. Suppose that the transmission axis of the first polarizer is rotated 20° relative to the axis of polarization of the incident and that the transmission axis of each exis of light, additional analyzer is rotated 20° relative to the transmission axis the previous one. What is the minimum number of polarizer needed (whole number), so the transmitted light through all polarizing sheets has an Striking intensity that is less then 10% that the first polarizer?arrow_forwardA high energy pulsed laser emits 1.5 nano second-long pulse of average power 1.80x10" W. The beam is cylindrical with 2.00 mm in radius. Determine the rms value of the B-field? -Tarrow_forwardA 23.0-mw (mill:-Watts) laser puts out a narrow cyclindrical beam 50 mm in diameter. What is the average N/C. rms E-field?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-HillAn Introduction to Physical SciencePhysicsISBN:9781305079137Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar TorresPublisher:Cengage Learning
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningUniversity Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

An Introduction to Physical Science
Physics
ISBN:9781305079137
Author:James Shipman, Jerry D. Wilson, Charles A. Higgins, Omar Torres
Publisher:Cengage Learning

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning