Introduction to the Practice of Statistics
Introduction to the Practice of Statistics
9th Edition
ISBN: 9781319055967
Author: Moore
Publisher: MAC HIGHER
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8.2, Problem 49UYK

(a)

To determine

To find: The formula for the mean and standard deviation of p^1and p^2.

(a)

Expert Solution
Check Mark

Answer to Problem 49UYK

Solution: The formula for mean of p^1 is as follows:

μp^1=p1

Similarly, the formula for mean of p^2 is as follows:

μp^2=p2

The formula for standard deviation of p^1 is as follows:

σp^1=p1(1p1)n1

Similarly, the formula for standard deviation of p^2 is as follows:

σp^2=p2(1p2)n2

Explanation of Solution

Calculation: The formula for mean of population proportion (p^) is as follows:

μp^=p

The formula for standard deviation of population proportion (p^) is as follows:

σp^=p(1p)n

So, the mean for p^1 and p^2 will be p1 and p2, and the standard deviation of p^1 and p^2 will be

σp^1=p1(1p1)n1 and σp^2=p2(1p2)n2.

(b)

To determine

To find: The mean of difference D=p^1p^2.

(b)

Expert Solution
Check Mark

Answer to Problem 49UYK

Solution: The mean of D is p1p2_.

Explanation of Solution

Calculation: The mean of the sum of two random variables is the sum of the individual means of those random variables.

The formula for mean of the sum of two random variables X and Y is as follows:

(μX+Y)=μX+μY

where μX and μY represent the individual mean of the random variables X and Y, respectively.

So, the mean of D is calculated as follows:

μD=μp^1p^2=μp^1+μp^2=μp^1μp^2

From part (a), the value of μp^1=p1 and μp^2=p2.

On substituting the values,

μD=μp^1μp^2=p1p2

Hence, the required mean of the difference is p1p2.

(c)

To determine

To find: The variance of D.

(c)

Expert Solution
Check Mark

Answer to Problem 49UYK

Solution: The variance of D is p1(1p1)n1+p2(1p2)n2_.

Explanation of Solution

Calculation: The variance of the sum of two random variables will be equal to the sum of the individual variances and twice the covariance between the variables. The formula for variance of the sum of two random variables X and Y is as follows:

σXY2=σX2+σY22×Cov(X,Y)

where σX2 and σY2 represent the variance of random variables X and Y, respectively, and Cov(X,Y) is the covariance of X and Y. So,

σp^1p^22=σp^12+σp^222×Cov(p^1,p^2)

But the variables are independent, so Cov(p^1,p^2)=0.

σp^1p^22=σp^12+σp^22=p1(1p1)n1+p2(1p2)n2

Hence, the required variance of the difference is p1(1p1)n1+p2(1p2)n2.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
(c) Because logistic regression predicts probabilities of outcomes, observations used to build a logistic regression model need not be independent. A. false: all observations must be independent B. true C. false: only observations with the same outcome need to be independent I ANSWERED: A. false: all observations must be independent.  (This was marked wrong but I have no idea why. Isn't this a basic assumption of logistic regression)
Business discuss
Spam filters are built on principles similar to those used in logistic regression. We fit a probability that each message is spam or not spam. We have several variables for each email. Here are a few: to_multiple=1 if there are multiple recipients, winner=1 if the word 'winner' appears in the subject line, format=1 if the email is poorly formatted, re_subj=1 if "re" appears in the subject line. A logistic model was fit to a dataset with the following output:   Estimate SE Z Pr(>|Z|) (Intercept) -0.8161 0.086 -9.4895 0 to_multiple -2.5651 0.3052 -8.4047 0 winner 1.5801 0.3156 5.0067 0 format -0.1528 0.1136 -1.3451 0.1786 re_subj -2.8401 0.363 -7.824 0 (a) Write down the model using the coefficients from the model fit.log_odds(spam) = -0.8161 + -2.5651 + to_multiple  + 1.5801 winner + -0.1528 format + -2.8401 re_subj(b) Suppose we have an observation where to_multiple=0, winner=1, format=0, and re_subj=0. What is the predicted probability that this message is spam?…

Chapter 8 Solutions

Introduction to the Practice of Statistics

Ch. 8.1 - Prob. 11UYKCh. 8.1 - Prob. 12UYKCh. 8.1 - Prob. 13UYKCh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Prob. 31ECh. 8.1 - Prob. 32ECh. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - Prob. 35ECh. 8.1 - Prob. 36ECh. 8.1 - Prob. 37ECh. 8.1 - Prob. 38ECh. 8.1 - Prob. 39ECh. 8.1 - Prob. 40ECh. 8.1 - Prob. 41ECh. 8.1 - Prob. 42ECh. 8.1 - Prob. 43ECh. 8.1 - Prob. 44ECh. 8.1 - Prob. 45ECh. 8.1 - Prob. 46ECh. 8.2 - Prob. 47UYKCh. 8.2 - Prob. 48UYKCh. 8.2 - Prob. 49UYKCh. 8.2 - Prob. 50UYKCh. 8.2 - Prob. 51UYKCh. 8.2 - Prob. 52UYKCh. 8.2 - Prob. 53UYKCh. 8.2 - Prob. 54UYKCh. 8.2 - Prob. 55UYKCh. 8.2 - Prob. 56ECh. 8.2 - Prob. 57ECh. 8.2 - Prob. 58ECh. 8.2 - Prob. 59ECh. 8.2 - Prob. 60ECh. 8.2 - Prob. 61ECh. 8.2 - Prob. 62ECh. 8.2 - Prob. 63ECh. 8.2 - Prob. 64ECh. 8.2 - Prob. 65ECh. 8.2 - Prob. 66ECh. 8.2 - Prob. 67ECh. 8.2 - Prob. 68ECh. 8.2 - Prob. 69ECh. 8.2 - Prob. 70ECh. 8.2 - Prob. 71ECh. 8.2 - Prob. 72ECh. 8.2 - Prob. 73ECh. 8 - Prob. 74ECh. 8 - Prob. 75ECh. 8 - Prob. 76ECh. 8 - Prob. 77ECh. 8 - Prob. 78ECh. 8 - Prob. 79ECh. 8 - Prob. 80ECh. 8 - Prob. 81ECh. 8 - Prob. 82ECh. 8 - Prob. 83ECh. 8 - Prob. 84ECh. 8 - Prob. 85ECh. 8 - Prob. 86ECh. 8 - Prob. 87ECh. 8 - Prob. 88ECh. 8 - Prob. 89ECh. 8 - Prob. 90ECh. 8 - Prob. 91ECh. 8 - Prob. 92ECh. 8 - Prob. 93ECh. 8 - Prob. 94ECh. 8 - Prob. 95ECh. 8 - Prob. 96ECh. 8 - Prob. 97E
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
The Shape of Data: Distributions: Crash Course Statistics #7; Author: CrashCourse;https://www.youtube.com/watch?v=bPFNxD3Yg6U;License: Standard YouTube License, CC-BY
Shape, Center, and Spread - Module 20.2 (Part 1); Author: Mrmathblog;https://www.youtube.com/watch?v=COaid7O_Gag;License: Standard YouTube License, CC-BY
Shape, Center and Spread; Author: Emily Murdock;https://www.youtube.com/watch?v=_YyW0DSCzpM;License: Standard Youtube License