
Calculus with Applications Books a la Carte Edition
11th Edition
ISBN: 9780133864564
Author: Margaret L. Lial; Nathan P. Ritchey; Raymond N. Greenwell
Publisher: Pearson Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 8.2, Problem 33E
To determine
To find: The volume of the solid of revolution when the region R is rotating about the x axis.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
5. The graph of ƒ is given below. Sketch a graph of f'.
6. The graph of ƒ is given below. Sketch a graph of f'.
0
x
7. The graph of ƒ is given below. List the x-values where f is not differentiable.
0
A
2
4
2. DRAW a picture, label using variables to represent each component, set up an
equation to relate the variables, then differentiate the equation to solve the
problem below.
The top of a ladder slides down a vertical wall at a rate of 0.15 m/s. At the moment when the
bottom of the ladder is 3 m from the wall, it slides away from the wall at a rate of 0.2 m/s. How
long is the ladder?
Please answer all questions and show full credit please
Chapter 8 Solutions
Calculus with Applications Books a la Carte Edition
Ch. 8.1 - YOUR TURN 1 Find
Ch. 8.1 - YOUR TURN 2 Find
Ch. 8.1 - YOUR TURN 3
Find
Ch. 8.1 - YOUR TURN 4 Find
.
Ch. 8.1 - YOUR TURN 5
Find
Ch. 8.1 - Prob. 1WECh. 8.1 - Find the following.
W2.
Ch. 8.1 - Find the following.
W3.
Ch. 8.1 - Find the following.
W4.
Ch. 8.1 - Use integration by parts to find the integrals in...
Ch. 8.1 - Prob. 6WECh. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Use integration by parts to find the integrals in...Ch. 8.1 - Prob. 12ECh. 8.1 - Exercises 13–22 are mixed—some require integration...Ch. 8.1 - Exercises 13–22 are mixed—some require integration...Ch. 8.1 - Exercises 13–22 are mixed—some require integration...Ch. 8.1 - Exercises 13–22 are mixed—some require integration...Ch. 8.1 - Exercises 13–22 are mixed—some require integration...Ch. 8.1 - Exercises 13–22 are mixed—some require integration...Ch. 8.1 - Exercises 13–22 are mixed—some require integration...Ch. 8.1 - Prob. 20ECh. 8.1 - Exercises 13–22 are mixed—some require integration...Ch. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - 31. Suppose that u and v are differentiable...Ch. 8.1 - 32. Suppose that u and v are differentiable...Ch. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - 35. Use integration by parts to derive the...Ch. 8.1 - 36. Use integration by parts to derive the...Ch. 8.1 - Prob. 37ECh. 8.1 - 38. Using integration by parts,
Subtracting from...Ch. 8.1 - 39. Rate of Change of Revenue The rate of change...Ch. 8.1 - 40. Reaction to a Drug The rate of reaction to a...Ch. 8.1 - 41. Growth of a Population The rate of growth of a...Ch. 8.1 - 42. APPLY IT Rate of Growth The area covered by a...Ch. 8.1 - 43. Thermic Effect of Food As we saw in an earlier...Ch. 8.1 - 44. Rumen Fermentation The rumen is the first...Ch. 8.2 - YOUR TURN 1 Find the volume of the solid of...Ch. 8.2 - Prob. 2YTCh. 8.2 - Prob. 1WECh. 8.2 - Prob. 2WECh. 8.2 - Find the following.
W3.
Ch. 8.2 - Prob. 4WECh. 8.2 - Find the following.
W5. (Sec. 15.4)
Ch. 8.2 - Prob. 6WECh. 8.2 - Prob. 1ECh. 8.2 - Prob. 2ECh. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Find the volume of the solid of revolution formed...Ch. 8.2 - Prob. 18ECh. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - The function defined by has as its graph a...Ch. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Find the average value of each function on the...Ch. 8.2 - Find the average value of each function on the...Ch. 8.2 - Find the average value of each function on the...Ch. 8.2 - Find the average value of each function on the...Ch. 8.2 - Find the average value of each function on the...Ch. 8.2 - Find the average value of each function on the...Ch. 8.2 - Find the average value of each function on the...Ch. 8.2 - Prob. 32ECh. 8.2 - Prob. 33ECh. 8.2 - 34. Average Price David Lopez plots the price per...Ch. 8.2 - 35. Average Price A stock analyst plots the price...Ch. 8.2 - Prob. 36ECh. 8.2 - 37. Average Inventory The DeMarco Pasta Company...Ch. 8.2 - 38. Public Debt In Example 5 of Section 10.3. the...Ch. 8.2 - Prob. 39ECh. 8.2 - 40. Blood Flow The figure shows the blood flow in...Ch. 8.2 - 41. Drug Reaction The intensity of the reaction to...Ch. 8.2 - Prob. 42ECh. 8.2 - 43. Production Rate Suppose the number of items a...Ch. 8.2 - 44. Typing Speed The function describes a...Ch. 8.2 - Prob. 45ECh. 8.3 - YOUR TURN 1 Find the total income over the first 2...Ch. 8.3 - YOUR TURN 2
Find the present value of an income...Ch. 8.3 - Prob. 3YTCh. 8.3 - Prob. 4YTCh. 8.3 - Prob. 1WECh. 8.3 - Prob. 2WECh. 8.3 - Prob. 3WECh. 8.3 - Prob. 4WECh. 8.3 - Prob. 1ECh. 8.3 - Each of the functions in Exercises 1–14 represents...Ch. 8.3 - Each of the functions in Exercises 1–14 represents...Ch. 8.3 - Each of the functions in Exercises 1–14 represents...Ch. 8.3 - Each of the functions in Exercises 1–14 represents...Ch. 8.3 - Each of the functions in Exercises 1–14 represents...Ch. 8.3 - Prob. 7ECh. 8.3 - Prob. 8ECh. 8.3 - Prob. 9ECh. 8.3 - Each of the functions in Exercises 1–14 represents...Ch. 8.3 - Prob. 11ECh. 8.3 - Each of the functions in Exercises 1–14 represents...Ch. 8.3 - Each of the functions in Exercises 1–14 represents...Ch. 8.3 - Each of the functions in Exercises 1–14 represents...Ch. 8.3 - 15. Accumulated Amount of Money Flow An investment...Ch. 8.3 - 16. Present Value A real estate investment is...Ch. 8.3 - 17. Money Flow The rate of a continuous (low of...Ch. 8.3 - 18. Money Flow The rate of a continuous money flow...Ch. 8.3 - 19. Present Value A money market fund has a...Ch. 8.3 - 20. Accumulated Amount of Money Flow Find the...Ch. 8.4 - YOUR TURN 1
Find each integral.
(a)
(b)
Ch. 8.4 - Prob. 2YTCh. 8.4 - Prob. 1WECh. 8.4 - Prob. 2WECh. 8.4 - Prob. 3WECh. 8.4 - Prob. 4WECh. 8.4 - Prob. 1ECh. 8.4 - Prob. 2ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 6ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 8ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 10ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 12ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 14ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 18ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 20ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 22ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 24ECh. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Determine whether each improper integral converges...Ch. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - Prob. 30ECh. 8.4 - Prob. 31ECh. 8.4 - Prob. 32ECh. 8.4 - Prob. 33ECh. 8.4 - Prob. 34ECh. 8.4 - 35. Find .
Ch. 8.4 - Prob. 36ECh. 8.4 - Prob. 37ECh. 8.4 - Prob. 38ECh. 8.4 - Prob. 39ECh. 8.4 - Prob. 40ECh. 8.4 - Prob. 41ECh. 8.4 - Capital Value Find the capital values of the...Ch. 8.4 - Prob. 43ECh. 8.4 - Prob. 44ECh. 8.4 - 45. Capital Value An investment produces a...Ch. 8.4 - 46. Capital Value Suppose income from an...Ch. 8.4 - Prob. 47ECh. 8.4 - Prob. 48ECh. 8.4 - 49. Drug Reaction The rate of reaction to a drug...Ch. 8.4 - Prob. 50ECh. 8.4 - Prob. 51ECh. 8.4 - Radioactive Waste The rate at which radioactive...Ch. 8.4 - Prob. 53ECh. 8.4 - 54. Gamma Function An important function in many...Ch. 8 - Prob. 1RECh. 8 - Prob. 2RECh. 8 - Prob. 3RECh. 8 - Prob. 4RECh. 8 - Prob. 5RECh. 8 - Prob. 6RECh. 8 - Prob. 7RECh. 8 - Prob. 8RECh. 8 - Prob. 9RECh. 8 - Prob. 10RECh. 8 - Prob. 11RECh. 8 - Prob. 12RECh. 8 - Prob. 13RECh. 8 - Prob. 14RECh. 8 - Prob. 15RECh. 8 - Prob. 16RECh. 8 - Prob. 17RECh. 8 - Prob. 18RECh. 8 - Prob. 19RECh. 8 - Prob. 20RECh. 8 - Prob. 21RECh. 8 - Prob. 22RECh. 8 - Prob. 23RECh. 8 - Prob. 24RECh. 8 - Prob. 25RECh. 8 - Prob. 26RECh. 8 - Prob. 27RECh. 8 - Prob. 28RECh. 8 - Prob. 29RECh. 8 - Prob. 30RECh. 8 - Prob. 31RECh. 8 - Prob. 32RECh. 8 - Prob. 33RECh. 8 - Prob. 34RECh. 8 - Prob. 35RECh. 8 - Prob. 36RECh. 8 - Prob. 37RECh. 8 - Prob. 38RECh. 8 - Prob. 39RECh. 8 - Prob. 40RECh. 8 - Prob. 41RECh. 8 - Prob. 42RECh. 8 - Prob. 43RECh. 8 - Prob. 44RECh. 8 - Prob. 45RECh. 8 - Prob. 46RECh. 8 - Prob. 47RECh. 8 - Prob. 48RECh. 8 - Prob. 49RECh. 8 - Prob. 50RECh. 8 - Prob. 51RECh. 8 - Prob. 52RECh. 8 - Prob. 53RECh. 8 - Prob. 54RECh. 8 - Prob. 55RECh. 8 - Prob. 56RECh. 8 - Prob. 57RECh. 8 - Prob. 58RECh. 8 - Prob. 59RECh. 8 - Prob. 60RECh. 8 - Prob. 61RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- please solve with full steps pleasearrow_forward4. Identify at least two mistakes in Francisco's work. Correct the mistakes and complete the problem by using the second derivative test. 2f 2X 2. Find the relative maximum and relative minimum points of f(x) = 2x3 + 3x² - 3, using the First Derivative Test or the Second Derivative Test. bx+ bx 6x +6x=0 12x- af 24 = 0 x=0 108 -2 5. Identify at least three mistakes in Francisco's work. Then sketch the graph of the function and label the local max and local min. 1. Find the equation of the tangent line to the curve y=x-2x3+x-2 at the point (1.-2). Sketch the araph of y=x42x3+x-2 and the tangent line at (1,-2) y' = 4x-6x y' (1) = 4(1) - 667 - 2 = 4(-2)4127-6(-2) 5-8-19-20 =arrow_forward۳/۱ R2X2 2) slots per pole per phase = 3/31 B=18060 msl Ka, Sin (1) Kdl Isin ( sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 120*50 5) Synchronous speed, 120 x 50 S1000-950 1000 Copper losses 5kw 50105 Rotor input 5 0.05 loo kw 6) 1 1000rpm اذا ميريد شرح الكتب فقط Look = 7) rotov DC ined sove in peaper PU + 96er Which of the following is converge, and which diverge? Give reasons for your answers with details. When your answer then determine the convergence sum if possible. 3" 6" Σ=1 (2-1) π X9arrow_forward
- 1 R2 X2 2) slots per pole per phase = 3/31 B = 180 - 60 msl Kd Kol, Sin (no) Isin (6) 2 sin(30) Sin (30) اذا ميريد شرح الكتب بس 0 بالفراغ 3) Cos (30) 0.866 4) Rotating 5) Synchronous speed; 120*50 Looo rem G S = 1000-950 solos 1000 Copper losses: 5kw Rotor input: 5 loo kw 0.05 1 اذا میرید شرح الكتب فقط look 7) rotor DC ined sove in pea PU+96er Q2// Find the volume of the solid bounded above by the cynnuer 2=6-x², on the sides by the cylinder x² + y² = 9, and below by the xy-plane. Q041 Convert 2 2x-2 Lake Gex 35 w2x-xབོ ,4-ཙཱཔ-y √4-x²-yz 21xy²dzdydx to(a) cylindrical coordinates, (b) Spherical coordinates. 201 25arrow_forwardshow full work pleasearrow_forward3. Describe the steps you would take to find the absolute max of the following function using Calculus f(x) = : , [-1,2]. Then use a graphing calculator to x-1 x²-x+1 approximate the absolute max in the closed interval.arrow_forward
- (7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz). Ꮖ (a) (4 points) Show that V x F = 0. (b) (4 points) Find a potential f for the vector field F. (c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use Stokes' Theorem to calculate the line integral Jos F.ds; as denotes the boundary of S. Explain your answer.arrow_forward(3) (16 points) Consider z = uv, u = x+y, v=x-y. (a) (4 points) Express z in the form z = fog where g: R² R² and f: R² → R. (b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate steps otherwise no credit. (c) (4 points) Let S be the surface parametrized by T(x, y) = (x, y, ƒ (g(x, y)) (x, y) = R². Give a parametric description of the tangent plane to S at the point p = T(x, y). (d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic approximation) of F = (fog) at a point (a, b). Verify that Q(x,y) F(a+x,b+y). =arrow_forward(6) (8 points) Change the order of integration and evaluate (z +4ry)drdy . So S√ ² 0arrow_forward
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Area Between The Curve Problem No 1 - Applications Of Definite Integration - Diploma Maths II; Author: Ekeeda;https://www.youtube.com/watch?v=q3ZU0GnGaxA;License: Standard YouTube License, CC-BY