![Precalculus with Limits](https://www.bartleby.com/isbn_cover_images/9781133947202/9781133947202_largeCoverImage.gif)
To find:the solution to the given system of linear equations
![Check Mark](/static/check-mark.png)
Answer to Problem 88E
The solution to the given system of equation is
Explanation of Solution
Given information:The system of equation is
Concept Involved:
Solution of a system of equation is the point which makes both the equation TRUE.
Graphically the solution to the system of equation is the point where the two lines meet.
A matrix derived from a system of linear equations (each written in standard form with the constant term on the right) is the augmented matrix of the system.
Elementary Row Operation:
The three operations that can be used on a system of linear equations to produce an equivalent system.
Operation | Notation |
1.Interchange two equations | |
2. Multiply an equation by a nonzero constant | |
3. Add a multiple of an equation to another equation. |
In matrix terminology, these three operations correspond to elementary row operations.
An elementary row operation on an augmented matrix of a given system of linear equations produces a new augmented matrix corresponding to a new (but equivalent) system of linear equations.
Two matrices are row-equivalent when one can be obtained from the other by a sequence of elementary row operations.
Row-Echelon Form and Reduced Row-Echelon Form:
A matrix in row-echelon form has the following properties.
1. Any rows consisting entirely of zeros occur at the bottom of the matrix.
2. For each row that does not consist entirely of zeros, the first nonzero entryis 1 (called a leading 1).
3. For two successive (nonzero) rows, the leading 1 in the higher row is fartherto the left than the leading 1 in the lower row.
A matrix in row-echelon form is in reduced row-echelon form when every columnthat has a leading 1 has zeros in every position above and below its leading 1.
Calculation:
Write the system of equation
Add -3 times the 1st row to the 2nd row
Add -1 times the 1st row to the 3rd row
Add -6 times the 1st row to the 4th row
Interchange the 2nd row and the 3rd row
Add 13 times the 2nd row to the 4th row
Multiply the 3rd row by -1
Add 78 times the 3rd row to the 4th row
Multiply the 4th row by -1/49
Add 2 times the 4th row to the 2nd row
Add -4 times the 4th row to the 1st row
Add 5 times the 3rd row to the 2nd row
Add -2 times the 3rd row to the 1st row
Add -2 times the 2nd row to the 1st row
The matrix is now in reduced row-echelon form. Converting back to a system of linear
equations, you have
Conclusion:
So, the solution set can be written as
Chapter 8 Solutions
Precalculus with Limits
- Draw the vertical and horizontal asymptotes. Then plot the intercepts (if any), and plot at least one point on each side of each vertical asymptote.arrow_forwardDraw the asymptotes (if there are any). Then plot two points on each piece of the graph.arrow_forwardCancel Done RESET Suppose that R(x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R(x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (a) Find another zero of R(x). ☐ | | | | |│ | | | -1 བ ¢ Live Adjust Filters Croparrow_forward
- Suppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (c) What is the maximum number of nonreal zeros that R (x) can have? ☐arrow_forwardSuppose that R (x) is a polynomial of degree 7 whose coefficients are real numbers. Also, suppose that R (x) has the following zeros. -1-4i, -3i, 5+i Answer the following. (b) What is the maximum number of real zeros that R (x) can have? ☐arrow_forwardi need help please dont use chat gptarrow_forward
- 3.1 Limits 1. If lim f(x)=-6 and lim f(x)=5, then lim f(x). Explain your choice. x+3° x+3* x+3 (a) Is 5 (c) Does not exist (b) is 6 (d) is infinitearrow_forward1 pts Let F and G be vector fields such that ▼ × F(0, 0, 0) = (0.76, -9.78, 3.29), G(0, 0, 0) = (−3.99, 6.15, 2.94), and G is irrotational. Then sin(5V (F × G)) at (0, 0, 0) is Question 1 -0.246 0.072 -0.934 0.478 -0.914 -0.855 0.710 0.262 .arrow_forward2. Answer the following questions. (A) [50%] Given the vector field F(x, y, z) = (x²y, e", yz²), verify the differential identity Vx (VF) V(V •F) - V²F (B) [50%] Remark. You are confined to use the differential identities. Let u and v be scalar fields, and F be a vector field given by F = (Vu) x (Vv) (i) Show that F is solenoidal (or incompressible). (ii) Show that G = (uvv – vVu) is a vector potential for F.arrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285741550/9781285741550_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134438986/9780134438986_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780134763644/9780134763644_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781319050740/9781319050740_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9780135189405/9780135189405_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337552516/9781337552516_smallCoverImage.gif)