Introduction To Quantum Mechanics
3rd Edition
ISBN: 9781107189638
Author: Griffiths, David J., Schroeter, Darrell F.
Publisher: Cambridge University Press
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.1, Problem 8.5P
To determine
An upper bound on the ground state energy for the “bouncing ball” potential and compare it with the exact answer.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem #1
(Problem 5.3 in book). Come up with a function for A (the Helmholtz free energy) and
derive the differential form that reveals A as a potential:
dA < -SdT – pdV [Eqn 5.20]
Problem 2.14 In the ground state of the harmonic oscillator, what is the probability (correct
to three significant digits) of finding the particle outside the classically allowed region?
Hint: Classically, the energy of an oscillator is E = (1/2) ka² = (1/2) mo²a², where a
is the amplitude. So the “classically allowed region" for an oscillator of energy E extends
from –/2E/mw² to +/2E/mo². Look in a math table under “Normal Distribution" or
"Error Function" for the numerical value of the integral, or evaluate it by computer.
Problem 3.36. Consider an Einstein solid for which both N and q are much
greater than 1. Think of each oscillator as a separate "particle."
(a) Show that the chemical potential is
N+
- kT ln
N
(b) Discuss this result in the limits N > q and N « q, concentrating on the
question of how much S increases when another particle carrying no energy
is added to the system. Does the formula make intuitive sense?
Chapter 8 Solutions
Introduction To Quantum Mechanics
Knowledge Booster
Similar questions
- Divergence theorem. (a) Use the divergence theorem to prove, v = -478 (7) (2.1) (b) [Problem 1.64, Griffiths] In case you're not persuaded with (a), try replacing r by (r² + e²)2 and watch what happens when ɛ → 0. Specifically, let 1 -V². 4л 1 D(r, ɛ) (2.2) p2 + g2 By taking note of the defining conditions of 8°(7) [(1) at r = 0, its value goes to infinity, (2) for all r + 0, its value is 0, and (3) the integral over all space is 1], demonstrate that 2.2 goes to 8*(F) as ɛ → 0.arrow_forwardProblem 3.27 Sequential measurements. An operator Ä, representing observ- able A, has two normalized eigenstates 1 and 2, with eigenvalues a1 and a2, respectively. Operator B, representing observable B, has two normalized eigen- states ø1 and ø2, with eigenvalues b1 and b2. The eigenstates are related by = (3ø1 + 402)/5, 42 = (401 – 302)/5. (a) Observable A is measured, and the value aj is obtained. What is the state of the system (immediately) after this measurement? (b) If B is now measured, what are the possible results, and what are their probabilities? (c) Right after the measurement of B, A is measured again. What is the proba- bility of getting a¡? (Note that the answer would be quite different if I had told you the outcome of the B measurement.)arrow_forwardDetermine the transmission coefficient for a rectangular barrier (same as Equation 2.127, only with +Vo in the region -a Vo (note that the wave function inside the barrier is different in the three cases). Partial answer: For Earrow_forward1 W:0E *Problem 1.3 Consider the gaussian distribution p(x) = Ae¬^(x-a)² %3D where A, a, and A are positive real constants. (Look up any integrals you need.) (a) Use Equation 1.16 to determine A. (b) Find (x), (x²), and ơ. (c) Sketch the graph of p(x).arrow_forwardProblem 1.17 A particle is represented (at time=0) by the wave function A(a²-x²). if-a ≤ x ≤+a. 0, otherwise. 4(x, 0) = { (a) Determine the normalization constant A. (b) What is the expectation value of x (at time t = 0)? (c) What is the expectation value of p (at time t = 0)? (Note that you cannot get it from p = md(x)/dt. Why not?) (d) Find the expectation value of x². (e) Find the expectation value of p².arrow_forwardSolve the time-independent Schrödinger equation with appropriate boundary conditions for an infinite square well centered at the origin [V (x) = 0, for -a/2 < x < +a/2; V (x) = 00 otherwise]. Check that your allowed energies are consistent with mine (Equation 2.23), and confirm that your y's can be obtained from mine (Equation 2.24) by the substitution x x - a/2.arrow_forwardProblem 2.3 Show that there is no acceptable solution to the (time-independent) Schrödinger equation (for the infinite square well) with E = 0 or E < 0. (This is a special case of the general theorem in Problem 2.2, but this time do it by explicitly solving the Schrödinger equation and showing that you cannot meet the boundary conditions.)arrow_forwardA particle of mass in moving in one dimension is confined to the region 0 < 1 < L by an infinite square well potential. In addition, the particle experiences a delta function potential of strengtlh A located at the center of the well (Fig. 1.11). The Schrödinger equation which describes this system is, within the well, + A8 (x – L/2) v (x) == Ep(x), 0 < x < L. !! 2m VIx) L/2 Fig. 1.11 Find a transcendental equation for the energy eigenvalues E in terms of the mass m, the potential strength A, and the size L of the system.arrow_forwardFor Problem 8.35, how do I prove, or perhaps verify, what it is they're asking for?arrow_forwardProblem 2.29 Analyze the odd bound state wave functions for the finite square well. Derive the transcendental equation for the allowed energies, and solve it graphically. Examine the two limiting cases. Is there always an odd bound state?arrow_forwardShow that a gaussian psi (x) = e ^(-ax^2) can be an eigenfunction of H(hat) for harmonic oscillator 1. Compute T(hat)*psi 2. Compute Vhat* psi - assume V operator is 1/2w^2x^2 3. Write out Hbar*psi and identify terms so Hber*psi=E*psi is true 4. From cancellation find a 5. insert back a to Schrodinger eq above and find Earrow_forwardProblem 2.2 Show that E must exceed the minimum value of V (x), for every normalizable solution to the time-independent Schrödinger equation. What is the classical analog to this statement? Hint: Rewrite Equation 2.5 in the form d² 2m [V(x) - E]; dx² if E < Vmin, then and its second derivative always have the same sign-argue that such a function cannot be normalized. h² d² 2m dx² + Vy = Ev. (2.5)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON