
University Calculus: Early Transcendentals, Loose-leaf Edition (4th Edition)
4th Edition
ISBN: 9780135164860
Author: Joel R. Hass, Christopher Heil, Przemyslaw Bogacki, Maurice D. Weir, George B. Thomas Jr.
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 8.1, Problem 83E
(a)
To determine
To evaluate the value of integral using the equation (4) in text book and check the work.
(b)
To determine
To evaluate the value of integral using the equation (5) in text book and check the work.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 8 Solutions
University Calculus: Early Transcendentals, Loose-leaf Edition (4th Edition)
Ch. 8.1 - Evaluate the integrals in Exercises 124 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 124 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 124 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 124 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...
Ch. 8.1 - Evaluate the integrals in Exercises 124 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Evaluate the integrals in Exercises 1–24 using...Ch. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Evaluate the integrals in Exercises 25-30 by using...Ch. 8.1 - Prob. 28ECh. 8.1 - Evaluate the integrals in Exercises 25-30 by using...Ch. 8.1 - Evaluate the integrals in Exercises 25-30 by using...Ch. 8.1 - Prob. 31ECh. 8.1 - Prob. 32ECh. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - Prob. 35ECh. 8.1 - Prob. 36ECh. 8.1 - Prob. 37ECh. 8.1 - Evaluate the integrals in Exercises 31–56. Some...Ch. 8.1 - Evaluate the integrals in Exercises 31–56. Some...Ch. 8.1 - Prob. 40ECh. 8.1 - Prob. 41ECh. 8.1 - Prob. 42ECh. 8.1 - Prob. 43ECh. 8.1 - Prob. 44ECh. 8.1 - Prob. 45ECh. 8.1 - Prob. 46ECh. 8.1 - Evaluate the integrals in Exercises 31–56. Some...Ch. 8.1 - Prob. 48ECh. 8.1 - Prob. 49ECh. 8.1 - Prob. 50ECh. 8.1 - Prob. 51ECh. 8.1 - Prob. 52ECh. 8.1 - Evaluate the integrals in Exercises 31–56. Some...Ch. 8.1 - Prob. 54ECh. 8.1 - Prob. 55ECh. 8.1 - Prob. 56ECh. 8.1 - Prob. 57ECh. 8.1 - Prob. 58ECh. 8.1 - Prob. 59ECh. 8.1 - Prob. 60ECh. 8.1 - Prob. 61ECh. 8.1 - Prob. 62ECh. 8.1 - Prob. 63ECh. 8.1 - Prob. 64ECh. 8.1 - Prob. 65ECh. 8.1 - Prob. 66ECh. 8.1 - Prob. 67ECh. 8.1 - Prob. 68ECh. 8.1 - Prob. 69ECh. 8.1 - Prob. 70ECh. 8.1 - Prob. 71ECh. 8.1 - Prob. 72ECh. 8.1 - Prob. 73ECh. 8.1 - Prob. 74ECh. 8.1 - Prob. 75ECh. 8.1 - Prob. 76ECh. 8.1 - Prob. 77ECh. 8.1 - Prob. 78ECh. 8.1 - Prob. 79ECh. 8.1 - Use the formula
to evaluate the integrals in...Ch. 8.1 - Prob. 81ECh. 8.1 - Prob. 82ECh. 8.1 - Prob. 83ECh. 8.1 - Prob. 84ECh. 8.2 - Evaluate the integrals in Exercise 1–22.
1.
Ch. 8.2 - Prob. 2ECh. 8.2 - Evaluate the integrals in Exercise 122. 3....Ch. 8.2 - Evaluate the integrals in Exercise 1–22.
4.
Ch. 8.2 - Evaluate the integrals in Exercise 1–22.
5.
Ch. 8.2 - Evaluate the integrals in Exercise 1–22.
6.
Ch. 8.2 - Evaluate the integrals in Exercise 122. 7. sin5xdxCh. 8.2 - Evaluate the integrals in Exercise 1–22.
8.
Ch. 8.2 - Evaluate the integrals in Exercise 1–22.
9.
Ch. 8.2 - Evaluate the integrals in Exercise 1–22.
10.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
11.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
12.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
13.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
14.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
15.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
16.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
17.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
18.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
19.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
20.
Ch. 8.2 - Evaluate the integrals in Exercises 1–22.
21.
Ch. 8.2 - Prob. 22ECh. 8.2 - Prob. 23ECh. 8.2 - Prob. 24ECh. 8.2 - Prob. 25ECh. 8.2 - Prob. 26ECh. 8.2 - Prob. 27ECh. 8.2 - Prob. 28ECh. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Evaluate the integrals in Exercises 23–32.
31.
Ch. 8.2 - Prob. 32ECh. 8.2 - Evaluate the integrals in Exercises 33–52.
33.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
34.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
35.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
36.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
37.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
38.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
39.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
40.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
41.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
42.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
43.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
44.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
45.
Ch. 8.2 - Evaluate the integrals in Exercises 33–52.
46.
Ch. 8.2 - Prob. 47ECh. 8.2 - Prob. 48ECh. 8.2 - Prob. 49ECh. 8.2 - Prob. 50ECh. 8.2 - Prob. 51ECh. 8.2 - Prob. 52ECh. 8.2 - Prob. 53ECh. 8.2 - Prob. 54ECh. 8.2 - Prob. 55ECh. 8.2 - Prob. 56ECh. 8.2 - Prob. 57ECh. 8.2 - Prob. 58ECh. 8.2 - Prob. 59ECh. 8.2 - Prob. 60ECh. 8.2 - Prob. 61ECh. 8.2 - Prob. 62ECh. 8.2 - Prob. 63ECh. 8.2 - Prob. 64ECh. 8.2 - Prob. 65ECh. 8.2 - Prob. 66ECh. 8.2 - Prob. 67ECh. 8.2 - Prob. 68ECh. 8.2 - Prob. 69ECh. 8.2 - Prob. 70ECh. 8.2 -
Arc length Find the length of the curve
y = ln...Ch. 8.2 - Prob. 72ECh. 8.2 - Prob. 73ECh. 8.2 - Prob. 74ECh. 8.2 - Prob. 75ECh. 8.2 - Volume Find the volume of the solid formed by...Ch. 8.2 - Prob. 77ECh. 8.2 - Prob. 78ECh. 8.3 - Evaluate the integrals in Exercises 1–14.
1.
Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
2.
Ch. 8.3 - Evaluate the integrals in Exercises 114. 3....Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
4.
Ch. 8.3 - Evaluate the integrals in Exercises 114. 5....Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
6.
Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
7.
Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
8.
Ch. 8.3 - Evaluate the integrals in Exercises 114. 9....Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
10.
Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
11. , y...Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
12. , y...Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
13. , x...Ch. 8.3 - Evaluate the integrals in Exercises 1–14.
14. , x...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Prob. 22ECh. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Prob. 25ECh. 8.3 - Prob. 26ECh. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Prob. 28ECh. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Prob. 32ECh. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Prob. 34ECh. 8.3 - Use any method to evaluate the integrals in...Ch. 8.3 - Prob. 36ECh. 8.3 - Prob. 37ECh. 8.3 - Prob. 38ECh. 8.3 - Prob. 39ECh. 8.3 - Prob. 40ECh. 8.3 - Prob. 41ECh. 8.3 - Prob. 42ECh. 8.3 - Prob. 43ECh. 8.3 - Prob. 44ECh. 8.3 - Prob. 45ECh. 8.3 - Prob. 46ECh. 8.3 - Prob. 47ECh. 8.3 - Prob. 48ECh. 8.3 - For Exercises 49–52, complete the square before...Ch. 8.3 - Prob. 50ECh. 8.3 - For Exercises 49–52, complete the square before...Ch. 8.3 - Prob. 52ECh. 8.3 - Prob. 53ECh. 8.3 - Prob. 54ECh. 8.3 - Prob. 55ECh. 8.3 - Prob. 56ECh. 8.3 - Prob. 57ECh. 8.3 - Prob. 58ECh. 8.3 - Prob. 59ECh. 8.3 - Prob. 60ECh. 8.3 - Prob. 61ECh. 8.3 - Prob. 62ECh. 8.3 - Prob. 63ECh. 8.3 - Prob. 64ECh. 8.4 - Expand the quotients in Exercises 1-8 by partial...Ch. 8.4 - Expand the quotients in Exercises 1−8 by partial...Ch. 8.4 - Prob. 3ECh. 8.4 - Prob. 4ECh. 8.4 - Prob. 5ECh. 8.4 - Prob. 6ECh. 8.4 - Prob. 7ECh. 8.4 - Prob. 8ECh. 8.4 - In Exercises 916, express the integrand as a sum...Ch. 8.4 - In Exercises 9–16, express the integrand as a sum...Ch. 8.4 - In Exercises 9–16, express the integrand as a sum...Ch. 8.4 - In Exercises 9–16, express the integrand as a sum...Ch. 8.4 - Prob. 13ECh. 8.4 - Prob. 14ECh. 8.4 - In Exercises 9–16, express the integrand as a sum...Ch. 8.4 - Prob. 16ECh. 8.4 - Prob. 17ECh. 8.4 - In Exercises 17–20, express the integrand as a sum...Ch. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - In Exercises 21-32, express the integrand as a sum...Ch. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - In Exercises 21-32, express the integrand as a sum...Ch. 8.4 - Prob. 25ECh. 8.4 - Prob. 26ECh. 8.4 - In Exercises 21-32, express the integrand as a sum...Ch. 8.4 - Prob. 28ECh. 8.4 - Prob. 29ECh. 8.4 - In Exercises 21-32, express the integrand as a sum...Ch. 8.4 - Prob. 31ECh. 8.4 - Prob. 32ECh. 8.4 - In Exercises 33−38, perform long division on the...Ch. 8.4 - Prob. 34ECh. 8.4 - Prob. 35ECh. 8.4 - Prob. 36ECh. 8.4 - Prob. 37ECh. 8.4 - Prob. 38ECh. 8.4 - Prob. 39ECh. 8.4 - Prob. 40ECh. 8.4 - Prob. 41ECh. 8.4 - Prob. 42ECh. 8.4 - Prob. 43ECh. 8.4 - Prob. 44ECh. 8.4 - Prob. 45ECh. 8.4 - Prob. 46ECh. 8.4 - Prob. 47ECh. 8.4 - Prob. 48ECh. 8.4 - Prob. 49ECh. 8.4 - Prob. 50ECh. 8.4 - Prob. 51ECh. 8.4 - Evaluate the integrals in Exercises 39–54.
52.
Ch. 8.4 - Prob. 53ECh. 8.4 - Prob. 54ECh. 8.4 - Prob. 55ECh. 8.4 - Prob. 56ECh. 8.4 - Prob. 57ECh. 8.4 - Prob. 58ECh. 8.4 - Prob. 59ECh. 8.4 - Prob. 60ECh. 8.4 - Prob. 61ECh. 8.4 - Prob. 62ECh. 8.4 - Prob. 63ECh. 8.4 - Prob. 64ECh. 8.4 - Prob. 65ECh. 8.4 - Prob. 66ECh. 8.4 - Prob. 67ECh. 8.4 - Prob. 68ECh. 8.4 - Prob. 69ECh. 8.4 - Prob. 70ECh. 8.4 - Prob. 71ECh. 8.4 - Prob. 72ECh. 8.4 - Prob. 73ECh. 8.4 - Prob. 74ECh. 8.4 - Prob. 75ECh. 8.4 - Prob. 76ECh. 8.4 - Prob. 77ECh. 8.4 - Prob. 78ECh. 8.5 - Use the table of integrals at the back of the text...Ch. 8.5 - Prob. 2ECh. 8.5 - Prob. 3ECh. 8.5 - Prob. 4ECh. 8.5 - Prob. 5ECh. 8.5 - Prob. 6ECh. 8.5 - Prob. 7ECh. 8.5 - Prob. 8ECh. 8.5 - Prob. 9ECh. 8.5 - Prob. 10ECh. 8.5 - Prob. 11ECh. 8.5 - Prob. 12ECh. 8.5 - Prob. 13ECh. 8.5 - Prob. 14ECh. 8.5 - Prob. 15ECh. 8.5 - Prob. 16ECh. 8.5 - Prob. 17ECh. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - Prob. 20ECh. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Prob. 25ECh. 8.5 - Prob. 26ECh. 8.5 - Prob. 27ECh. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.5 - Prob. 31ECh. 8.5 - Prob. 32ECh. 8.5 - Prob. 33ECh. 8.5 - Prob. 34ECh. 8.5 - Prob. 35ECh. 8.5 - Prob. 36ECh. 8.5 - Prob. 37ECh. 8.5 - Prob. 38ECh. 8.5 - Prob. 39ECh. 8.5 - Prob. 40ECh. 8.5 - Prob. 41ECh. 8.5 - Prob. 42ECh. 8.5 - Prob. 43ECh. 8.5 - Prob. 44ECh. 8.5 - Use reduction formulas to evaluate the integrals...Ch. 8.5 - Prob. 46ECh. 8.5 - Prob. 47ECh. 8.5 - Prob. 48ECh. 8.5 - Prob. 49ECh. 8.5 - Prob. 50ECh. 8.5 - Prob. 51ECh. 8.5 - Prob. 52ECh. 8.5 - Prob. 53ECh. 8.5 - Prob. 54ECh. 8.5 - Prob. 55ECh. 8.5 - Prob. 56ECh. 8.5 - Prob. 57ECh. 8.5 - Prob. 58ECh. 8.5 - Prob. 59ECh. 8.5 - Prob. 60ECh. 8.5 - Prob. 61ECh. 8.5 - Prob. 62ECh. 8.5 - Prob. 63ECh. 8.5 - Prob. 64ECh. 8.6 - The instructions for the integrals in Exercises...Ch. 8.6 - Prob. 2ECh. 8.6 - Prob. 3ECh. 8.6 - Prob. 4ECh. 8.6 - The instructions for the integrals in Exercises...Ch. 8.6 - Prob. 6ECh. 8.6 - Prob. 7ECh. 8.6 - Prob. 8ECh. 8.6 - Prob. 9ECh. 8.6 - Prob. 10ECh. 8.6 - In Exercises 11–22, estimate the minimum number of...Ch. 8.6 - Prob. 12ECh. 8.6 - Prob. 13ECh. 8.6 - Prob. 14ECh. 8.6 - Prob. 15ECh. 8.6 - Prob. 16ECh. 8.6 - Prob. 17ECh. 8.6 - Prob. 18ECh. 8.6 - Prob. 19ECh. 8.6 - In Exercises 11–22, estimate the minimum number of...Ch. 8.6 - Prob. 21ECh. 8.6 - Prob. 22ECh. 8.6 - Prob. 23ECh. 8.6 - Prob. 24ECh. 8.6 - Prob. 25ECh. 8.6 - Prob. 26ECh. 8.6 - Prob. 27ECh. 8.6 - The error function The error function,
which is...Ch. 8.6 - Prob. 29ECh. 8.6 - Prob. 30ECh. 8.6 - Elliptic integrals The length of the...Ch. 8.6 - Prob. 32ECh. 8.6 - Prob. 33ECh. 8.6 - Prob. 34ECh. 8.6 - Prob. 35ECh. 8.6 - Prob. 36ECh. 8.6 - Prob. 37ECh. 8.6 - Prob. 38ECh. 8.6 - Prob. 39ECh. 8.6 - Prob. 40ECh. 8.7 - The integrals in Exercises 1-34 converge. Evaluate...Ch. 8.7 - Prob. 2ECh. 8.7 - Prob. 3ECh. 8.7 - Prob. 4ECh. 8.7 - Prob. 5ECh. 8.7 - Prob. 6ECh. 8.7 - Prob. 7ECh. 8.7 - Prob. 8ECh. 8.7 - Prob. 9ECh. 8.7 - Prob. 10ECh. 8.7 - Prob. 11ECh. 8.7 - Prob. 12ECh. 8.7 - Prob. 13ECh. 8.7 - Prob. 14ECh. 8.7 - Prob. 15ECh. 8.7 - Prob. 16ECh. 8.7 - Prob. 17ECh. 8.7 - Prob. 18ECh. 8.7 - Prob. 19ECh. 8.7 - Prob. 20ECh. 8.7 - Prob. 21ECh. 8.7 - Prob. 22ECh. 8.7 - Prob. 23ECh. 8.7 - Prob. 24ECh. 8.7 - Prob. 25ECh. 8.7 - Prob. 26ECh. 8.7 - Prob. 27ECh. 8.7 - Prob. 28ECh. 8.7 - Prob. 29ECh. 8.7 - The integrals in Exercises 1-34 converge. Evaluate...Ch. 8.7 - Prob. 31ECh. 8.7 - Prob. 32ECh. 8.7 - Prob. 33ECh. 8.7 - Prob. 34ECh. 8.7 - In Exercises 35–68, use integration, the Direct...Ch. 8.7 - Prob. 36ECh. 8.7 - Prob. 37ECh. 8.7 - Prob. 38ECh. 8.7 - Prob. 39ECh. 8.7 - Prob. 40ECh. 8.7 - Prob. 41ECh. 8.7 - Prob. 42ECh. 8.7 - Prob. 43ECh. 8.7 - Prob. 44ECh. 8.7 - Prob. 45ECh. 8.7 - Prob. 46ECh. 8.7 - Prob. 47ECh. 8.7 - Prob. 48ECh. 8.7 - Prob. 49ECh. 8.7 - Prob. 50ECh. 8.7 - Prob. 51ECh. 8.7 - Prob. 52ECh. 8.7 - Prob. 53ECh. 8.7 - Prob. 54ECh. 8.7 - Prob. 55ECh. 8.7 - Prob. 56ECh. 8.7 - Prob. 57ECh. 8.7 - Prob. 58ECh. 8.7 - Prob. 59ECh. 8.7 - In Exercises 35–68, use integration, the Direct...Ch. 8.7 - Prob. 61ECh. 8.7 - Prob. 62ECh. 8.7 - Prob. 63ECh. 8.7 - Prob. 64ECh. 8.7 - Prob. 65ECh. 8.7 - Prob. 66ECh. 8.7 - Prob. 67ECh. 8.7 - Prob. 68ECh. 8.7 - Prob. 69ECh. 8.7 - Prob. 70ECh. 8.7 - Prob. 71ECh. 8.7 - Prob. 72ECh. 8.7 - Prob. 73ECh. 8.7 - Prob. 74ECh. 8.7 - Prob. 75ECh. 8.7 - Prob. 76ECh. 8.7 - Prob. 77ECh. 8.7 - Prob. 78ECh. 8.7 - Prob. 79ECh. 8.7 - Prob. 80ECh. 8.7 - Prob. 81ECh. 8.7 - Prob. 82ECh. 8.7 - Prob. 83ECh. 8.7 - Prob. 84ECh. 8.7 - Prob. 85ECh. 8.7 - Prob. 86ECh. 8 - Prob. 1GYRCh. 8 - Prob. 2GYRCh. 8 - Prob. 3GYRCh. 8 - Prob. 4GYRCh. 8 - Prob. 5GYRCh. 8 - Prob. 6GYRCh. 8 - Prob. 7GYRCh. 8 - Prob. 8GYRCh. 8 - Prob. 9GYRCh. 8 - Prob. 10GYRCh. 8 - Prob. 11GYRCh. 8 - Prob. 12GYRCh. 8 - Prob. 13GYRCh. 8 - Prob. 1PECh. 8 - Prob. 2PECh. 8 - Prob. 3PECh. 8 - Prob. 4PECh. 8 - Prob. 5PECh. 8 - Prob. 6PECh. 8 - Prob. 7PECh. 8 - Prob. 8PECh. 8 - Prob. 9PECh. 8 - Prob. 10PECh. 8 - Prob. 11PECh. 8 - Prob. 12PECh. 8 - Prob. 13PECh. 8 - Prob. 14PECh. 8 - Prob. 15PECh. 8 - Prob. 16PECh. 8 - Prob. 17PECh. 8 - Prob. 18PECh. 8 - Prob. 19PECh. 8 - Prob. 20PECh. 8 - Prob. 21PECh. 8 - Prob. 22PECh. 8 - Prob. 23PECh. 8 - Prob. 24PECh. 8 - Prob. 25PECh. 8 - Prob. 26PECh. 8 - Prob. 27PECh. 8 - Prob. 28PECh. 8 - Prob. 29PECh. 8 - Prob. 30PECh. 8 - Prob. 31PECh. 8 - Prob. 32PECh. 8 - Prob. 33PECh. 8 - Prob. 34PECh. 8 - Prob. 35PECh. 8 - Prob. 36PECh. 8 - Prob. 37PECh. 8 - Prob. 38PECh. 8 - Prob. 39PECh. 8 - Prob. 40PECh. 8 - Prob. 41PECh. 8 - Prob. 42PECh. 8 - Prob. 43PECh. 8 - Prob. 44PECh. 8 - Prob. 45PECh. 8 - Prob. 46PECh. 8 - Prob. 47PECh. 8 - Prob. 48PECh. 8 - Prob. 49PECh. 8 - Prob. 50PECh. 8 - Prob. 51PECh. 8 - Prob. 52PECh. 8 - Prob. 53PECh. 8 - Prob. 54PECh. 8 - Prob. 55PECh. 8 - Prob. 56PECh. 8 - Prob. 57PECh. 8 - Prob. 58PECh. 8 - Prob. 59PECh. 8 - Prob. 60PECh. 8 - Prob. 61PECh. 8 - Prob. 62PECh. 8 - Prob. 63PECh. 8 - Prob. 64PECh. 8 - Prob. 65PECh. 8 - Prob. 66PECh. 8 - Prob. 67PECh. 8 - Prob. 68PECh. 8 - Prob. 69PECh. 8 - Prob. 70PECh. 8 - Prob. 71PECh. 8 - Prob. 72PECh. 8 - Prob. 73PECh. 8 - Prob. 74PECh. 8 - Prob. 75PECh. 8 - Prob. 76PECh. 8 - Prob. 77PECh. 8 - Prob. 78PECh. 8 - Prob. 79PECh. 8 - Prob. 80PECh. 8 - Prob. 81PECh. 8 - Prob. 82PECh. 8 - Prob. 83PECh. 8 - Prob. 84PECh. 8 - Prob. 85PECh. 8 - Prob. 86PECh. 8 - Prob. 87PECh. 8 - Prob. 88PECh. 8 - Prob. 89PECh. 8 - Prob. 90PECh. 8 - Prob. 91PECh. 8 - Prob. 92PECh. 8 - Prob. 93PECh. 8 - Prob. 94PECh. 8 - Prob. 95PECh. 8 - Prob. 96PECh. 8 - Prob. 97PECh. 8 - Prob. 98PECh. 8 - Prob. 99PECh. 8 - Prob. 100PECh. 8 - Prob. 101PECh. 8 - Prob. 102PECh. 8 - Prob. 103PECh. 8 - Prob. 104PECh. 8 - Prob. 105PECh. 8 - Prob. 106PECh. 8 - Prob. 107PECh. 8 - Prob. 108PECh. 8 - Prob. 109PECh. 8 - Prob. 110PECh. 8 - Prob. 111PECh. 8 - Prob. 112PECh. 8 - Prob. 113PECh. 8 - Prob. 114PECh. 8 - Prob. 115PECh. 8 - Prob. 116PECh. 8 - Prob. 117PECh. 8 - Prob. 118PECh. 8 - Prob. 119PECh. 8 - Prob. 120PECh. 8 - Prob. 121PECh. 8 - Prob. 122PECh. 8 - Prob. 123PECh. 8 - Prob. 124PECh. 8 - Prob. 125PECh. 8 - Prob. 126PECh. 8 - Prob. 127PECh. 8 - Prob. 128PECh. 8 - Prob. 129PECh. 8 - Prob. 130PECh. 8 - Prob. 131PECh. 8 - Prob. 132PECh. 8 - Prob. 133PECh. 8 - Prob. 134PECh. 8 - Prob. 135PECh. 8 - Prob. 1AAECh. 8 - Prob. 2AAECh. 8 - Prob. 3AAECh. 8 - Prob. 4AAECh. 8 - Prob. 5AAECh. 8 - Prob. 6AAECh. 8 - Prob. 7AAECh. 8 - Prob. 8AAECh. 8 - Prob. 9AAECh. 8 - Prob. 10AAECh. 8 - Prob. 11AAECh. 8 - Prob. 12AAECh. 8 - Prob. 13AAECh. 8 - Prob. 14AAECh. 8 - Prob. 15AAECh. 8 - Prob. 16AAECh. 8 - Prob. 17AAECh. 8 - Prob. 18AAECh. 8 - Prob. 19AAECh. 8 - Prob. 20AAECh. 8 - Prob. 21AAECh. 8 - Prob. 22AAECh. 8 - Prob. 23AAECh. 8 - Prob. 24AAECh. 8 - Prob. 25AAECh. 8 - Prob. 26AAECh. 8 - Prob. 27AAECh. 8 - Prob. 28AAECh. 8 - Prob. 29AAECh. 8 - Prob. 30AAECh. 8 - Prob. 31AAECh. 8 - Prob. 32AAECh. 8 - Prob. 33AAECh. 8 - Prob. 34AAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
Double and Triple Integrals; Author: Professor Dave Explains;https://www.youtube.com/watch?v=UubU3U2C8WM;License: Standard YouTube License, CC-BY