
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
8th Edition
ISBN: 9781259731709
Author: ROSEN
Publisher: MCG
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8.1, Problem 54E
Use Algorithm 1 to determine the maximum number of total attendees in the talks in Example 6 if
a) 20, 10, 50, 30, 15, 25, 40.
b) 100, 5, 10, 20, 25, 40, 30.
c) 2, 3, 8, 5, 4, 7, 10.
d) 10, 8, 7, 25, 20, 30, 5.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Construct a know-show table for each statement below that appears to be true.
Problem 3. Pricing a multi-stock option the Margrabe formula
The purpose of this problem is to price a swap option in a 2-stock model, similarly as
what we did in the example in the lectures. We consider a two-dimensional Brownian
motion given by W₁ = (W(¹), W(2)) on a probability space (Q, F,P). Two stock prices
are modeled by the following equations:
dX
=
dY₁ =
X₁ (rdt+
rdt+0₁dW!)
(²)),
Y₁ (rdt+dW+0zdW!"),
with Xo
xo and Yo =yo. This corresponds to the multi-stock model studied in class,
but with notation (X+, Y₁) instead of (S(1), S(2)). Given the model above, the measure
P is already the risk-neutral measure (Both stocks have rate of return r). We write
σ = 0₁+0%. We consider a swap option, which gives you the right, at time T, to
exchange one share of X for one share of Y. That is, the option has payoff
F=(Yr-XT).
(a) We first assume that r = 0 (for questions (a)-(f)). Write an explicit expression for
the process Xt.
Reminder before proceeding to question (b): Girsanov's theorem…
Problem 1. Multi-stock model
We consider a 2-stock model similar to the one studied in class. Namely, we consider
=
S(1)
S(2)
=
S(¹) exp (σ1B(1) + (M1 - 0/1 )
S(²) exp (02B(2) + (H₂-
M2
where (B(¹) ) +20 and (B(2) ) +≥o are two Brownian motions, with
t≥0
Cov (B(¹), B(2)) = p min{t, s}.
"
The purpose of this problem is to prove that there indeed exists a 2-dimensional Brownian
motion (W+)+20 (W(1), W(2))+20 such that
=
S(1)
S(2)
=
=
S(¹) exp (011W(¹) + (μ₁ - 01/1) t)
롱)
S(²) exp (021W (1) + 022W(2) + (112 - 03/01/12) t).
where σ11, 21, 22 are constants to be determined (as functions of σ1, σ2, p).
Hint: The constants will follow the formulas developed in the lectures.
(a) To show existence of (Ŵ+), first write the expression for both W. (¹) and W (2)
functions of (B(1), B(²)).
as
(b) Using the formulas obtained in (a), show that the process (WA) is actually a 2-
dimensional standard Brownian motion (i.e. show that each component is normal,
with mean 0, variance t, and that their…
Chapter 8 Solutions
Discrete Mathematics and Its Applications ( 8th International Edition ) ISBN:9781260091991
Ch. 8.1 - Use mathematical induction to verify the formula...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - A vending machine dispensing books of stamps...Ch. 8.1 - A country uses as currency coins with values of 1...Ch. 8.1 - How many was are there to pay a bill of 17 pesos...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...
Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - Messages are transmitted over a communications...Ch. 8.1 - A bus driver pays all tolls, using only nickels...Ch. 8.1 - a) Find the recurrence relation satisfied by Rn,...Ch. 8.1 - a) Find the recurrence relation satisfied by Rn,...Ch. 8.1 - a) Find the recurrence relation satisfied by Sn,...Ch. 8.1 - Find a recurrence relation for the number of bit...Ch. 8.1 - How many bit sequences of length seven contain an...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - a) Find a recurrence relation for the number of...Ch. 8.1 - Show that the Fibonacci numbers satisfy the...Ch. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - a) Use the recurrence relation developed in...Ch. 8.1 - In the Tower of Hanoi puzzle, suppose our goal is...Ch. 8.1 - Exercises 33-37 deal with a variation of the...Ch. 8.1 - Exercises 33-37 deal with a variation of the...Ch. 8.1 - Prob. 35ECh. 8.1 - Exercises 33-37 deal with a variation of the...Ch. 8.1 - Prob. 37ECh. 8.1 - Prob. 38ECh. 8.1 - Show that the Reve’s puzzle with four disks can be...Ch. 8.1 - Prob. 40ECh. 8.1 - Show that if R(n) is the number of moves used by...Ch. 8.1 - Prob. 42ECh. 8.1 - Prob. 43ECh. 8.1 - Prob. 44ECh. 8.1 - Prob. 45ECh. 8.1 - Prob. 46ECh. 8.1 - Prob. 47ECh. 8.1 - Prob. 48ECh. 8.1 - Show that an2=an2an+2an .Ch. 8.1 - Prob. 50ECh. 8.1 - Prob. 51ECh. 8.1 - Prob. 52ECh. 8.1 - Construct the algorithm described in the text...Ch. 8.1 - Use Algorithm 1 to determine the maximum number of...Ch. 8.1 - For each part of Exercise 54, use your algorithm...Ch. 8.1 - In this exercise we will develop a dynamic...Ch. 8.1 - Dynamic programming can be used to develop an...Ch. 8.2 - Determine which of these are linear homogeneous...Ch. 8.2 - Determine which of these are linear homogeneous...Ch. 8.2 - Solve these recurrence relations together with the...Ch. 8.2 - Solve these recurrence relations together with the...Ch. 8.2 - Prob. 5ECh. 8.2 - Prob. 6ECh. 8.2 - Prob. 7ECh. 8.2 - A model for the number of lobsters caught per year...Ch. 8.2 - Prob. 9ECh. 8.2 - Prob. 10ECh. 8.2 - The Lucas numbers satisfy the recurrence relation...Ch. 8.2 - Find the solution to an=2an1+an2+2an3 for n = 3,4,...Ch. 8.2 - Find the solution to an=7an2+6an3 with a0=9,a1=10...Ch. 8.2 - Find the solution to an=5an24an4 with...Ch. 8.2 - Prob. 15ECh. 8.2 - Prob. 16ECh. 8.2 - Prove this identity relating the Fibonacci numbers...Ch. 8.2 - Solve the recurrence relation an=6an112an2+8an3...Ch. 8.2 - Prob. 19ECh. 8.2 - Prob. 20ECh. 8.2 - Prob. 21ECh. 8.2 - What is the general form of the solutions of a...Ch. 8.2 - Consider the nonhomogeneous linear recurrence...Ch. 8.2 - Consider the nonhomogeneous linear recurrence...Ch. 8.2 - a) Determine values of the constants A and B such...Ch. 8.2 - What is the general form of the particular...Ch. 8.2 - What is the general form of the particular...Ch. 8.2 - a) Find all solutions of the recurrence relation...Ch. 8.2 - Prob. 29ECh. 8.2 - Prob. 30ECh. 8.2 - Find all solutions of the recurrence relation...Ch. 8.2 - Find the solution of the recurrence relation...Ch. 8.2 - Prob. 33ECh. 8.2 - Prob. 34ECh. 8.2 - Find the solution of the recurrence relation...Ch. 8.2 - Prob. 36ECh. 8.2 - Prob. 37ECh. 8.2 - Prob. 38ECh. 8.2 - Prob. 39ECh. 8.2 - Solve the simultaneous recurrence relations...Ch. 8.2 - Prob. 41ECh. 8.2 - Prob. 42ECh. 8.2 - Prob. 43ECh. 8.2 - Prob. 44ECh. 8.2 - Prob. 45ECh. 8.2 - Suppose that there are two goats on an island...Ch. 8.2 - Prob. 47ECh. 8.2 - Prob. 48ECh. 8.2 - Use Exercise 48 to solve the recurrence relation...Ch. 8.2 - It can be shown that Cn, the average number of...Ch. 8.2 - Prob. 51ECh. 8.2 - Prob. 52ECh. 8.2 - Prob. 53ECh. 8.3 - How many comparisons are needed for a binary...Ch. 8.3 - Prob. 2ECh. 8.3 - Multiply (1110)2 and (1010)2 using the fast...Ch. 8.3 - Express the fast multiplication algorithm in...Ch. 8.3 - Determine a value for the constant C in Example...Ch. 8.3 - Prob. 6ECh. 8.3 - Prob. 7ECh. 8.3 - Suppose that f(n)=2f(n/2)+3 when is an even...Ch. 8.3 - Prob. 9ECh. 8.3 - Find f(n) when n=2k , where f satisfies the...Ch. 8.3 - Give a big-O estimate for the function f in...Ch. 8.3 - Find f(n) when n=3k , where f satisfies the...Ch. 8.3 - Give a big-O estimate for the function f in...Ch. 8.3 - Suppose that there are n=2k terms in an...Ch. 8.3 - How many rounds are in the elimination tournament...Ch. 8.3 - Prob. 16ECh. 8.3 - Suppose that the votes of n people for different...Ch. 8.3 - Suppose that each person in a group of n people...Ch. 8.3 - a) Set up a divide-and-conquer recurrence relation...Ch. 8.3 - a) Set up a divide-and-conquer recurrence relation...Ch. 8.3 - Suppose that the function f satisfies the...Ch. 8.3 - Suppose that the function f satisfies the...Ch. 8.3 - This exercise deals with the problem of finding...Ch. 8.3 - Apply the algorithm described in Example 12 for...Ch. 8.3 - Apply the algorithm described in Example 12 for...Ch. 8.3 - Use pseudocode to describe the recursive algorithm...Ch. 8.3 - Prob. 27ECh. 8.3 - Prob. 28ECh. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.3 - Prob. 30ECh. 8.3 - Prob. 31ECh. 8.3 - Prob. 32ECh. 8.3 - Prob. 33ECh. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.3 - In Exercises 29-33, assume that f is an increasing...Ch. 8.4 - Find the generating function for the finite...Ch. 8.4 - Find the generating function for the finite...Ch. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - Prob. 5ECh. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - In Exercises 3-8, by a closed form we mean an...Ch. 8.4 - Find the coefficient of x10in the power series of...Ch. 8.4 - Prob. 10ECh. 8.4 - Prob. 11ECh. 8.4 - Prob. 12ECh. 8.4 - Use generating functions to determine the number...Ch. 8.4 - Use generating functions to determine the number...Ch. 8.4 - Use generating functions to determine the number...Ch. 8.4 - Use generating functions to find the number of...Ch. 8.4 - In how many ways can 25 identical donuts be...Ch. 8.4 - Use generating functions to find the number of...Ch. 8.4 - Prob. 19ECh. 8.4 - Prob. 20ECh. 8.4 - Prob. 21ECh. 8.4 - Prob. 22ECh. 8.4 - Prob. 23ECh. 8.4 - Prob. 24ECh. 8.4 - Explain how generating functions can be used to...Ch. 8.4 - Explain how generating functions can be used to...Ch. 8.4 - Prob. 27ECh. 8.4 - Prob. 28ECh. 8.4 - Use generating functions (and a computer algebra...Ch. 8.4 - Use generating functions (and a computer algebra...Ch. 8.4 - Prob. 31ECh. 8.4 - If G(x) is the generating function for the...Ch. 8.4 - Prob. 33ECh. 8.4 - Prob. 34ECh. 8.4 - Prob. 35ECh. 8.4 - Use generating functions to solve the recurrence...Ch. 8.4 - Prob. 37ECh. 8.4 - Use generating functions to solve the recurrence...Ch. 8.4 - Use generating functions to solve the recurrence...Ch. 8.4 - Prob. 40ECh. 8.4 - Prob. 41ECh. 8.4 - Prob. 42ECh. 8.4 - (Calculus required) Let {Cn}be the sequence of...Ch. 8.4 - Use generating functions to prove Pascal’s...Ch. 8.4 - Use generating functions to prove Vandermonde’s...Ch. 8.4 - Prob. 46ECh. 8.4 - Prob. 47ECh. 8.4 - Prob. 48ECh. 8.4 - Find the sequence with each of these functions as...Ch. 8.4 - Find the sequence with each of these functions as...Ch. 8.4 - A coding system encodes messages using strings of...Ch. 8.4 - A coding system encodes messages using strings of...Ch. 8.4 - Generating functions are useful in studying the...Ch. 8.4 - Generating functions are useful in studying the...Ch. 8.4 - Prob. 55ECh. 8.4 - Prob. 56ECh. 8.4 - Generating functions are useful in studying the...Ch. 8.4 - Generating functions are useful in studying the...Ch. 8.4 - Suppose that X is a random variable on a sample...Ch. 8.4 - Prob. 60ECh. 8.4 - Prob. 61ECh. 8.4 - Show that if X and Y are independent random...Ch. 8.5 - How many elements are in A1A2 if there are 12...Ch. 8.5 - There are 345 students at a college who have taken...Ch. 8.5 - A survey of households in the United States...Ch. 8.5 - A marketing report concerning personal computers...Ch. 8.5 - Find the number of elements A1A2A3 if there are...Ch. 8.5 - Prob. 6ECh. 8.5 - There are 2504 computer science students at a...Ch. 8.5 - In a survey of 270 college students, it is found...Ch. 8.5 - How many students are enrolled in a course either...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - Find the number of positive integers not exceeding...Ch. 8.5 - How many swings of length eight do not contain six...Ch. 8.5 - How many permutations of the 26 letters of the...Ch. 8.5 - How many permutations of the 10 digits either...Ch. 8.5 - Prob. 18ECh. 8.5 - Prob. 19ECh. 8.5 - How many terms are there in the formula for the...Ch. 8.5 - Prob. 21ECh. 8.5 - Prob. 22ECh. 8.5 - Prob. 23ECh. 8.5 - Prob. 24ECh. 8.5 - Let E1, E2 ,and E3 be three events from a sample...Ch. 8.5 - Prob. 26ECh. 8.5 - Find the probability that when four numbers from 1...Ch. 8.5 - Prob. 28ECh. 8.5 - Prob. 29ECh. 8.5 - Prob. 30ECh. 8.5 - Prob. 31ECh. 8.6 - Suppose that in a bushel of 100 apples there are...Ch. 8.6 - Prob. 2ECh. 8.6 - Prob. 3ECh. 8.6 - Prob. 4ECh. 8.6 - Find the number of primes less than 200 using the...Ch. 8.6 - Prob. 6ECh. 8.6 - How many positive integers less than 10,000 are...Ch. 8.6 - Prob. 8ECh. 8.6 - How many ways are there to distribute six...Ch. 8.6 - In how many ways can eight distinct balls be...Ch. 8.6 - In how many ways can seven different jobs be...Ch. 8.6 - List all the derangements of {1, 2,3, 4}.Ch. 8.6 - Prob. 13ECh. 8.6 - Prob. 14ECh. 8.6 - A machine that inserts letters into envelopes goes...Ch. 8.6 - A group of n students is assigned seats for each...Ch. 8.6 - Prob. 17ECh. 8.6 - Prob. 18ECh. 8.6 - Prob. 19ECh. 8.6 - Prob. 20ECh. 8.6 - For which positive integers n is Dn, the number of...Ch. 8.6 - Prob. 22ECh. 8.6 - Prob. 23ECh. 8.6 - Prob. 24ECh. 8.6 - Prob. 25ECh. 8.6 - How many derangements of {1, 2, 3, 4, 5, 6} end...Ch. 8.6 - Prove Theorem 1.Ch. 8 - a) What is a recurrence re1aon? b) Find a...Ch. 8 - Explain how the Fibonacci numbers are used to...Ch. 8 - a) Find a recurrence relation for the number of...Ch. 8 - Prob. 6RQCh. 8 - a) Explain how to solve linear homogeneous...Ch. 8 - Prob. 8RQCh. 8 - Prob. 9RQCh. 8 - a) Give a formula for the number of elements in...Ch. 8 - a) Give a formula for the number of elements in...Ch. 8 - Prob. 12RQCh. 8 - Explain how the principle of inclusion-exclusion...Ch. 8 - Prob. 14RQCh. 8 - Prob. 15RQCh. 8 - a) Define a derangement. b) Why is counting the...Ch. 8 - A group of 10 people begin a chain letter, with...Ch. 8 - A nuclear reactor has created 18 grams of a...Ch. 8 - Every hour the U.S. government prints 10,000 more...Ch. 8 - Suppose that every hour there are two new bacteria...Ch. 8 - Messages are sent over a communications channel...Ch. 8 - Prob. 6SECh. 8 - How many ways are there to form these postages...Ch. 8 - Prob. 8SECh. 8 - Solve the recurrence relation an=a2n1/bn2 if a0=1...Ch. 8 - Prob. 10SECh. 8 - Find the solution of the recurrence relation...Ch. 8 - Prob. 12SECh. 8 - Prob. 13SECh. 8 - Prob. 14SECh. 8 - Prob. 15SECh. 8 - In Exercises 15-18 we develop a dynamic...Ch. 8 - In Exercises 15-18 we develop a dynamic...Ch. 8 - In Exercises 15-18 we develop a dynamic...Ch. 8 - Find the solution to the recurrence relation...Ch. 8 - Find the solution to the recurrence relation...Ch. 8 - Give a big-O estimate for the size of f in...Ch. 8 - Find a recurrence relation that describes the...Ch. 8 - Prob. 23SECh. 8 - Prob. 24SECh. 8 - Prob. 25SECh. 8 - Find an where a) an=3 . b) an=4n+7 . c) an=n2+n+1Ch. 8 - Prob. 27SECh. 8 - Prob. 28SECh. 8 - Prob. 29SECh. 8 - Prob. 30SECh. 8 - Prob. 31SECh. 8 - Prob. 32SECh. 8 - Prob. 33SECh. 8 - Prob. 34SECh. 8 - Prob. 35SECh. 8 - How many terms are needed when the...Ch. 8 - How many solutions in positive integers are there...Ch. 8 - How many positive integers less than 1,000,000 are...Ch. 8 - How many positive integers less than 200 are a)...Ch. 8 - How many ways are there to assign six different...Ch. 8 - What is the probability that exactly one person is...Ch. 8 - How many bit stings of length six do not contain...Ch. 8 - What is the probability that a bit string of...Ch. 8 - Prob. 1CPCh. 8 - Prob. 2CPCh. 8 - Prob. 3CPCh. 8 - Prob. 4CPCh. 8 - Prob. 5CPCh. 8 - Prob. 6CPCh. 8 - Prob. 7CPCh. 8 - Prob. 8CPCh. 8 - Prob. 9CPCh. 8 - Prob. 10CPCh. 8 - Prob. 11CPCh. 8 - Prob. 12CPCh. 8 - Given a positive integer n, list all the...Ch. 8 - Prob. 1CAECh. 8 - Prob. 2CAECh. 8 - Find as many prime Fibonacci numbers as you can....Ch. 8 - Prob. 4CAECh. 8 - Prob. 5CAECh. 8 - Prob. 6CAECh. 8 - Prob. 7CAECh. 8 - Prob. 8CAECh. 8 - Prob. 9CAECh. 8 - List all the derangements of 1,2,3,4,5,6,7,8 .Ch. 8 - Prob. 11CAECh. 8 - Find the original source where Fibonacci presented...Ch. 8 - Explain how the Fibonacci numbers arise in a...Ch. 8 - Prob. 3WPCh. 8 - Discuss as mans different problems as possible...Ch. 8 - Prob. 5WPCh. 8 - Prob. 6WPCh. 8 - Prob. 7WPCh. 8 - Prob. 8WPCh. 8 - Describe the solution of Ulam’s problem (see...Ch. 8 - Discuss variations of Ulam’s problem (see Exercise...Ch. 8 - Prob. 11WPCh. 8 - Describe how sieve methods are used in number...Ch. 8 - Look up the rules of the old French card game of...Ch. 8 - Prob. 14WPCh. 8 - Describe the Polyá theory of counting and the kind...Ch. 8 - The problème des ménages (the problem of the...Ch. 8 - Explain how rook polynomials can be used to solve...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Roedel Electronics produces tablet computer accessories, including integrated keyboard tablet stands that connect a keyboard to a tablet device and holds the device at a preferred angle for easy viewing and typing. Roedel produces two sizes of integrated keyboard tablet stands, small and large. Each size uses the same keyboard attachment, but the stand consists of two different pieces, a top flap and a vertical stand that differ by size. Thus, a completed integrated keyboard tablet stand consists of three subassemblies that are manufactured by Roedel: a keyboard, a top flap, and a vertical stand. Roedel's sales forecast indicates that 7,000 small integrated keyboard tablet stands and 5,000 large integrated keyboard tablet stands will be needed to satisfy demand during the upcoming Christmas season. Because only 500 hours of in-house manufacturing time are available, Roedel is considering purchasing some, or all, of the subassemblies from outside suppliers. If Roedel manufactures a…arrow_forwardShow three different pairs of integers, a and b, where at least one example includes a negative integer. For each of your examples, determine if each of the following statements are true or falsearrow_forwardThe scores of 8 students on the midterm exam and final exam were as follows. Student Midterm Final Anderson 98 89 Bailey 88 74 Cruz 87 97 DeSana 85 79 Erickson 85 94 Francis 83 71 Gray 74 98 Harris 70 91 Find the value of the (Spearman's) rank correlation coefficient test statistic that would be used to test the claim of no correlation between midterm score and final exam score. Round your answer to 3 places after the decimal point, if necessary. Test statistic: rs =arrow_forward
- (a) Develop a model that minimizes semivariance for the Hauck Financial data given in the file HauckData with a required return of 10%. Assume that the five planning scenarios in the Hauck Financial rvices model are equally likely to occur. Hint: Modify model (8.10)-(8.19). Define a variable d, for each scenario and let d₂ > R - R¸ with d ≥ 0. Then make the objective function: Min Let FS = proportion of portfolio invested in the foreign stock mutual fund IB = proportion of portfolio invested in the intermediate-term bond fund LG = proportion of portfolio invested in the large-cap growth fund LV = proportion of portfolio invested in the large-cap value fund SG = proportion of portfolio invested in the small-cap growth fund SV = proportion of portfolio invested in the small-cap value fund R = the expected return of the portfolio R = the return of the portfolio in years. Min s.t. R₁ R₂ = R₁ R R5 = FS + IB + LG + LV + SG + SV = R₂ R d₁ =R- d₂z R- d₂ ZR- d₁R- d≥R- R = FS, IB, LG, LV, SG, SV…arrow_forwardThe Martin-Beck Company operates a plant in St. Louis with an annual capacity of 30,000 units. Product is shipped to regional distribution centers located in Boston, Atlanta, and Houston. Because of an anticipated increase in demand, Martin-Beck plans to increase capacity by constructing a new plant in one or more of the following cities: Detroit, Toledo, Denver, or Kansas. The following is a linear program used to determine which cities Martin-Beck should construct a plant in. Let y₁ = 1 if a plant is constructed in Detroit; 0 if not y₂ = 1 if a plant is constructed in Toledo; 0 if not y₂ = 1 if a plant is constructed in Denver; 0 if not y = 1 if a plant is constructed in Kansas City; 0 if not. The variables representing the amount shipped from each plant site to each distribution center are defined just as for a transportation problem. *,, = the units shipped in thousands from plant i to distribution center j i = 1 (Detroit), 2 (Toledo), 3 (Denver), 4 (Kansas City), 5 (St.Louis) and…arrow_forwardConsider the following mixed-integer linear program. Max 3x1 + 4x2 s.t. 4x1 + 7x2 ≤ 28 8x1 + 5x2 ≤ 40 x1, x2 ≥ and x1 integer (a) Graph the constraints for this problem. Indicate on your graph all feasible mixed-integer solutions. On the coordinate plane the horizontal axis is labeled x1 and the vertical axis is labeled x2. A region bounded by a series of connected line segments, and several horizontal lines are on the graph. The series of line segments connect the approximate points (0, 4), (3.889, 1.778), and (5, 0). The region is above the horizontal axis, to the right of the vertical axis, and below the line segments. At each integer value between 0 and 4 on the vertical axis, a horizontal line extends out from the vertical axis to the series of connect line segments. On the coordinate plane the horizontal axis is labeled x1 and the vertical axis is labeled x2. A region bounded by a series of connected line segments, and several…arrow_forward
- Consider the nonlinear optimization model stated below. Min s.t. 2x²-18x + 2XY + y² - 14Y + 53 x + 4Y ≤ 8 (a) Find the minimum solution to this problem. |at (X, Y) = (b) If the right-hand side of the constraint is increased from 8 to 9, how much do you expect the objective function to change? Based on the dual value on the constraint X + 4Y ≤ 8, we expect the optimal objective function value to decrease by (c) Resolve the problem with a new right-hand side of the constraint of 9. How does the actual change compare with your estimate? If we resolve the problem with a new right-hand-side of 9 the new optimal objective function value is| , so the actual change is a decrease of rather than what we expected in part (b).arrow_forwardStatement:If 2 | a and 3| a, then 6 a. So find three integers, and at least one integer should be negative. For each of your examples, determine if the statement is true or false.arrow_forwardStatement: If 4 | a and 6 | a, then 24 | a. So find three integers, and at least one integer should be negative. For each of your examples, determine if the statement is true or false.arrow_forward
- 2) dassify each critical point of the given plane autovers system x'=x-2x²-2xy y' = 4y-Sy³-7xyarrow_forwardEvaluate the next integralarrow_forward1. For each of the following, find the critical numbers of f, the intervals on which f is increasing or decreasing, and the relative maximum and minimum values of f. (a) f(x) = x² - 2x²+3 (b) f(x) = (x+1)5-5x-2 (c) f(x) = x2 x-9 2. For each of the following, find the intervals on which f is concave upward or downward and the inflection points of f. (a) f(x) = x - 2x²+3 (b) g(x) = x³- x (c) f(x)=x-6x3 + x-8 3. Find the relative maximum and minimum values of the following functions by using the Second Derivative Test. (a) f(x)=1+3x² - 2x3 (b) g(x) = 2x3 + 3x² - 12x-4arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningElementary Geometry For College Students, 7eGeometryISBN:9781337614085Author:Alexander, Daniel C.; Koeberlein, Geralyn M.Publisher:Cengage,
- Elements Of Modern AlgebraAlgebraISBN:9781285463230Author:Gilbert, Linda, JimmiePublisher:Cengage Learning,Algebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell


Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning

Elementary Geometry For College Students, 7e
Geometry
ISBN:9781337614085
Author:Alexander, Daniel C.; Koeberlein, Geralyn M.
Publisher:Cengage,

Elements Of Modern Algebra
Algebra
ISBN:9781285463230
Author:Gilbert, Linda, Jimmie
Publisher:Cengage Learning,

Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell
Find number of persons in a part with 66 handshakes Combinations; Author: Anil Kumar;https://www.youtube.com/watch?v=33TgLi-wp3E;License: Standard YouTube License, CC-BY
Discrete Math 6.3.1 Permutations and Combinations; Author: Kimberly Brehm;https://www.youtube.com/watch?v=J1m9sB5XZQc;License: Standard YouTube License, CC-BY
How to use permutations and combinations; Author: Mario's Math Tutoring;https://www.youtube.com/watch?v=NEGxh_D7yKU;License: Standard YouTube License, CC-BY
Permutations and Combinations | Counting | Don't Memorise; Author: Don't Memorise;https://www.youtube.com/watch?v=0NAASclUm4k;License: Standard Youtube License
Permutations and Combinations Tutorial; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=XJnIdRXUi7A;License: Standard YouTube License, CC-BY