(a)
Section 1:
To find: The sample proportion of the students who takes breakfast regularly.
(a)
Section 1:
Answer to Problem 18E
Solution: The sample proportion of the students who takes breakfast regularly is
Explanation of Solution
Given: The randomly selected samples of 300 students are asked on their regular eating habits of breakfast. The survey showed that 109 students eat their breakfast regularly.
Explanation:
Calculation: The formula for sample proportion is defined as:
Here,
Substitute
Therefore, the sample proportion
Section 2:
To find: The standard error
Section 2:
Answer to Problem 18E
Solution: The standard error
Explanation of Solution
Calculation: The formula for standard error
The sample proportion
Therefore, the standard error is obtained as 0.0278.
Section 3:
To find: The margin of error for 95% confidence level.
Section 3:
Answer to Problem 18E
Solution: The margin of error for 95% confidence level is
Explanation of Solution
Calculation: The formula for margin of error m is defined as:
Here,
The standard error is obtained as
So, the margin of error is obtained as:
Therefore, the margin of error is obtained as 0.0545.
(b)
Whether the guidelines to use the large-sample confidence interval for population proportion are satisfied.
(b)
Answer to Problem 18E
Solution: Yes, the guidelines are satisfied to use the large-sample confidence interval for the population proportion.
Explanation of Solution
In the provided problem of eating breakfast, the number of successes is defined as the number of students who eat their breakfast regularly. So, the number of successes is 109.
The number of failures is obtained as,
The obtained number of successes and failures shows that they are more than 10.
Therefore, the guidelines to use the large-sample confidence interval for a population proportion are satisfied.
(c)
To find: The 95% large-sample confidence interval for the population proportion.
(c)
Answer to Problem 18E
Solution: The 95% large-sample confidence interval is
Explanation of Solution
Calculation: The formula for large-sample confidence interval for population proportion p is defined as:
Here,
The sample proportion
Substitute the values of margin of error and sample proportion in the formula for confidence interval. Therefore, the large-sample confidence interval is obtained as:
Therefore, the required confidence interval is obtained as
(d)
To explain: A short statement on the meaning of the obtained confidence interval.
(d)
Answer to Problem 18E
Solution: The obtained confidence interval shows that it is 95% confident that between 30.88% and 41.78% of students responded that they eat their breakfast regularly.
Explanation of Solution
This shows that there is 95% confidence that the percentage of the students who responded that they eat their breakfast regularly is lie between 30.88% and 41.78%.
Want to see more full solutions like this?
Chapter 8 Solutions
Introduction to the Practice of Statistics 9E & LaunchPad for Introduction to the Practice of Statistics 9E (Twelve-Month Access)
- Introduce yourself and describe a time when you used data in a personal or professional decision. This could be anything from analyzing sales data on the job to making an informed purchasing decision about a home or car. Describe to Susan how to take a sample of the student population that would not represent the population well. Describe to Susan how to take a sample of the student population that would represent the population well. Finally, describe the relationship of a sample to a population and classify your two samples as random, systematic, cluster, stratified, or convenience.arrow_forward1.2.17. (!) Let G,, be the graph whose vertices are the permutations of (1,..., n}, with two permutations a₁, ..., a,, and b₁, ..., b, adjacent if they differ by interchanging a pair of adjacent entries (G3 shown below). Prove that G,, is connected. 132 123 213 312 321 231arrow_forwardYou are planning an experiment to determine the effect of the brand of gasoline and the weight of a car on gas mileage measured in miles per gallon. You will use a single test car, adding weights so that its total weight is 3000, 3500, or 4000 pounds. The car will drive on a test track at each weight using each of Amoco, Marathon, and Speedway gasoline. Which is the best way to organize the study? Start with 3000 pounds and Amoco and run the car on the test track. Then do 3500 and 4000 pounds. Change to Marathon and go through the three weights in order. Then change to Speedway and do the three weights in order once more. Start with 3000 pounds and Amoco and run the car on the test track. Then change to Marathon and then to Speedway without changing the weight. Then add weights to get 3500 pounds and go through the three gasolines in the same order.Then change to 4000 pounds and do the three gasolines in order again. Choose a gasoline at random, and run the car with this gasoline at…arrow_forward
- AP1.2 A child is 40 inches tall, which places her at the 90th percentile of all children of similar age. The heights for children of this age form an approximately Normal distribution with a mean of 38 inches. Based on this information, what is the standard deviation of the heights of all children of this age? 0.20 inches (c) 0.65 inches (e) 1.56 inches 0.31 inches (d) 1.21 inchesarrow_forwardAP1.1 You look at real estate ads for houses in Sarasota, Florida. Many houses range from $200,000 to $400,000 in price. The few houses on the water, however, have prices up to $15 million. Which of the following statements best describes the distribution of home prices in Sarasota? The distribution is most likely skewed to the left, and the mean is greater than the median. The distribution is most likely skewed to the left, and the mean is less than the median. The distribution is roughly symmetric with a few high outliers, and the mean is approximately equal to the median. The distribution is most likely skewed to the right, and the mean is greater than the median. The distribution is most likely skewed to the right, and the mean is less than the median.arrow_forwardDuring busy political seasons, many opinion polls are conducted. In apresidential race, how do you think the participants in polls are generally selected?Discuss any issues regarding simple random, stratified, systematic, cluster, andconvenience sampling in these polls. What about other types of polls, besides political?arrow_forward
- Please could you explain why 0.5 was added to each upper limpit of the intervals.Thanksarrow_forward28. (a) Under what conditions do we say that two random variables X and Y are independent? (b) Demonstrate that if X and Y are independent, then it follows that E(XY) = E(X)E(Y); (e) Show by a counter example that the converse of (ii) is not necessarily true.arrow_forward1. Let X and Y be random variables and suppose that A = F. Prove that Z XI(A)+YI(A) is a random variable.arrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman