LaunchPad for Moore's Introduction to the Practice of Statistics (12 month access)
LaunchPad for Moore's Introduction to the Practice of Statistics (12 month access)
8th Edition
ISBN: 9781464133404
Author: David S. Moore, George P. McCabe, Bruce A. Craig
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 8, Problem 96E
To determine

To find: The 95% margin of error for the difference of two proportions for sample size n=60.

Expert Solution
Check Mark

Answer to Problem 96E

Solution: The margin of error is 0.1607.

Explanation of Solution

Calculation: The assumption made that the sample size n is the common value of n1and n2 and hence n1=60andn2=60. The margin of error is defined as:

m=z*×SED

Where, z* is the critical value for the standard normal variable and SED is the standard error of the difference. Also, the standard error of D is defined as:

SED=p^1(1p^1)n1+p^2(1p^2)n2

Where,

p^1=Sample proportion from population 1p^2=Sample proportion from population 2n1=Sample size of group 1n2=Sample size of group 2

Substitute the provided values p^1=0.8,p^2=0.6 and n1=60,n2=60 in the above defined formula to calculate the standard error of D.

SED=0.8×(10.8)60+0.6×(10.6)60=0.0027+0.004=0.082

The value of z* for 95% confidence level is z*=1.96 from the standard normal table. So, the margin of error is obtained as:

m=z*×SED^=1.96×0.082=0.1607

Therefore, the margin of error is obtained as 0.1607.

To determine

To find: The 95% margin of error for the difference of two proportions for sample size n=70.

Expert Solution
Check Mark

Answer to Problem 96E

Solution: The margin of error is 0.1482.

Explanation of Solution

Calculation: The assumption made that the sample size n is the common value of n1and n2 and hence n1=70,n2=70. The margin of error is defined as:

m=z*×SED

Where z* is the critical value for the standard normal variable and SED is the standard error of the difference. Also, the standard error of D is defined as:

SED=p^1(1p^1)n1+p^2(1p^2)n2

Where

p^1=Sample proportion from population 1p^2=Sample proportion from population 2n1=Sample size of group 1n2=Sample size of group 2

Substitute the provided values p^1=0.8,p^2=0.6 and n1=70,n2=70 in the above defined formula to calculate the standard error of D.

SED=0.8×(10.8)70+0.6×(10.6)70=0.0023+0.0034=0.0756

The value of z* for 95% confidence level is z*=1.96 from the standard normal table. So, the margin of error is obtained as:

m=z*×SED^=1.96×0.0756=0.1482

Therefore, the margin of error is obtained as 0.1482.

To determine

To find: The 95% margin of error for the difference of two proportions for sample size n=80.

Expert Solution
Check Mark

Answer to Problem 96E

Solution: The margin of error is 0.1386.

Explanation of Solution

Calculation: The assumption made that the sample size n is the common value of n1and n2 and hence n1=80andn2=80. The margin of error is defined as:

m=z*×SED

Where z* is the critical value for the standard normal variable and SED is the standard error of the difference. Also, the standard error of D is defined as:

SED=p^1(1p^1)n1+p^2(1p^2)n2

Where

p^1=Sample proportion from population 1p^2=Sample proportion from population 2n1=Sample size of group 1n2=Sample size of group 2

Substitute the provided values p^1=0.8,p^2=0.6 and n1=80,n2=80 in the above defined formula to calculate the standard error of D.

SED=0.8×(10.8)80+0.6×(10.6)80=0.0707

The value of z* for 95% confidence level is z*=1.96 from the standard normal table. So, the margin of error is obtained as:

m=z*×SED^=1.96×0.0707=0.1386

Therefore, the margin of error is obtained as 0.1386.

To determine

To find: The 95% margin of error for the difference of two proportions for sample size n=100.

Expert Solution
Check Mark

Answer to Problem 96E

Solution: The margin of error is 0.1239.

Explanation of Solution

Calculation: The assumption made that the sample size n is the common value of n1and n2 and hence n1=100andn2=100. The margin of error for confidence level C is defined as:

m=z*×SED

Where z* is the value for the standard normal density curve and SED is the standard error of the difference. Also, the standard error of D is defined as:

SED=p^1(1p^1)n1+p^2(1p^2)n2

Where

p^1=Sample proportion from population 1p^2=Sample proportion from population 2n1=Sample size of group 1n2=Sample size of group 2

Substitute the provided values p^1=0.8,p^2=0.6 and n1=100,n2=100 in the above defined formula to calculate the standard error of D.

SED=0.8×(10.8)100+0.6×(10.6)100=0.0632

The value of z* for 95% confidence level is z*=1.96 from the standard normal table. So, the margin of error is obtained as:

m=z*×SED^=1.96×0.0632=0.1239

Therefore, the margin of error is obtained as 0.1239.

To determine

To find: The 95% margin of error for the difference of two proportions for sample size n=400.

Expert Solution
Check Mark

Answer to Problem 96E

Solution: The margin of error is 0.0619.

Explanation of Solution

Calculation: The assumption made that the sample size n is the common value of n1and n2 and hence n1=400andn2=400. The margin of error is calculated as,

m=z*×SED

Where z* is the critical value for the standard normal variable and SED is the standard error of the difference. The standard error of D is defined as:

SED=p^1(1p^1)n1+p^2(1p^2)n2

Where

p^1=Sample proportion from population 1p^2=Sample proportion from population 2n1=Sample size of group 1n2=Sample size of group 2

Substitute the provided values p^1=0.8,p^2=0.6 and n1=400,n2=400 in the above defined formula to calculate the standard error of D.

SED=0.8×(10.8)80+0.6×(10.6)80=0.0316

The value of z* for 95% confidence level is z*=1.96 from the standard normal table. So, the margin of error is obtained as:

m=z*×SED^=1.96×0.0316=0.0619

Therefore, the margin of error is obtained as 0.0619.

To determine

To find: The 95% margin of error for the difference of two proportions for sample size n=500.

Expert Solution
Check Mark

Answer to Problem 96E

Solution: The margin of error is 0.0555.

Explanation of Solution

Calculation: The assumption made that the sample size n is the common value of n1and n2 and hence n1=500andn2=500. The margin of error for confidence level C is defined as:

m=z*×SED

Where z* is the critical value for the standard normal variable and SED is the standard error of the difference. The standard error of D is defined as:

SED=p^1(1p^1)n1+p^2(1p^2)n2

Where

p^1=Sample proportion from population 1p^2=Sample proportion from population 2n1=Sample size of group 1n2=Sample size of group 2

Substitute the provided values p^1=0.8,p^2=0.6 and n1=500,n2=500 in the above defined formula to calculate the standard error of D.

SED=0.8×(10.8)80+0.6×(10.6)80=0.0283

The value of z* for 95% confidence level is z*=1.96 from the standard normal table. So, the margin of error is obtained as:

m=z*×SED^=1.96×0.0283=0.0555

Therefore, the margin of error is obtained as 0.0555.

To determine

To find: The 95% margin of error for the difference of two proportions for sample size n=1000.

Expert Solution
Check Mark

Answer to Problem 96E

Solution: The margin of error is 0.0392.

Explanation of Solution

Calculation: The assumption made that the sample size n is the common value of n1and n2 and hence n1=1000andn2=1000. The margin of error is calculated as:

m=z*×SED

Where z* is the critical value for the standard normal variable and SED is the standard error of the difference. The standard error of D is defined as:

SED=p^1(1p^1)n1+p^2(1p^2)n2

Where

p^1=Sample proportion from population 1p^2=Sample proportion from population 2n1=Sample size of group 1n2=Sample size of group 2

Substitute the provided values p^1=0.8,p^2=0.6 and n1=1000,n2=1000 in the above defined formula to calculate the standard error of D.

SED=0.8×(10.8)80+0.6×(10.6)80=0.02

The value of z* for 95% confidence level is z*=1.96 from the standard normal table. So, the margin of error is obtained as:

m=z*×SED^=1.96×0.02=0.0392

Therefore, the margin of error is obtained as 0.0392.

To determine

The obtained results of margin of error for different sample sizes in a table.

Expert Solution
Check Mark

Answer to Problem 96E

Solution: The obtained results of 95% margins of error for different sample sizes are tabulated as:

N M
60 0.1607
70 0.1482
80 0.1386
100 0.1239
400 0.0619
500 0.0555
1000 0.0392

Explanation of Solution

The 95% margins of error for the difference between two proportions for different sample sizes are calculated as in the previous parts and are tabulated as:

N M
60 0.1607
70 0.1482
80 0.1386
100 0.1239
400 0.0619
500 0.0555
1000 0.0392

So, it is observed that with an increase in the sample size the margin of error reduces. Hence, a larger sample results in more accurate results.

To determine

To graph: The 95% margins of error obtained for different sample sizes.

Expert Solution
Check Mark

Explanation of Solution

Graph: To obtain the graph of 95% margins of error for different sample sizes, Minitab is used. The steps followed to construct the graph are:

Step 1: Enter the data of the sample sizes and the associated margins of error values in the worksheet.

Step 2: Select Graph→Scatterplot.

Step 3: Select Simple from the opened dialog and click on OK.

Step 4: Select the Y variables as margin of error column and X variable as sample size column and click on OK.

The graph is obtained as:

LaunchPad for Moore's Introduction to the Practice of Statistics (12 month access), Chapter 8, Problem 96E

To determine

To explain: A short summary of the obtained results.

Expert Solution
Check Mark

Answer to Problem 96E

Solution: The obtained results of margins of error and the graph shows that the margin of error decreases as the sample size increases. But the rate of decrease of margin of error is very less for large n.

Explanation of Solution

The margins of error for different sample sizes are obtained and tabulated. The results show that the margin of error decreases as the sample size increases. This is also shown by the graph.

Hence, a larger sample is desirable for a lower error.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Suppose you are gambling on a roulette wheel. Each time the wheel is spun, the result is one of the outcomes 0, 1, and so on through 36. Of these outcomes, 18 are red, 18 are black, and 1 is green. On each spin you bet $5 that a red outcome will occur and $1 that the green outcome will occur. If red occurs, you win a net $4. (You win $10 from red and nothing from green.) If green occurs, you win a net $24. (You win $30 from green and nothing from red.) If black occurs, you lose everything you bet for a loss of $6. a.  Use simulation to generate 1,000 plays from this strategy. Each play should indicate the net amount won or lost. Then, based on these outcomes, calculate a 95% confidence interval for the total net amount won or lost from 1,000 plays of the game. (Round your answers to two decimal places and if your answer is negative value, enter "minus" sign.)   I worked out the Upper Limit, but I can't seem to arrive at the correct answer for the Lower Limit. What is the Lower Limit?…
Let us suppose we have some article reported on a study of potential sources of injury to equine veterinarians conducted at a university veterinary hospital. Forces on the hand were measured for several common activities that veterinarians engage in when examining or treating horses. We will consider the forces on the hands for two tasks, lifting and using ultrasound. Assume that both sample sizes are 6, the sample mean force for lifting was 6.2 pounds with standard deviation 1.5 pounds, and the sample mean force for using ultrasound was 6.4 pounds with standard deviation 0.3 pounds. Assume that the standard deviations are known. Suppose that you wanted to detect a true difference in mean force of 0.25 pounds on the hands for these two activities. Under the null hypothesis, 40 0. What level of type II error would you recommend here? = Round your answer to four decimal places (e.g. 98.7654). Use α = 0.05. β = 0.0594 What sample size would be required? Assume the sample sizes are to be…
Consider the hypothesis test Ho: 0 s² = = 4.5; s² = 2.3. Use a = 0.01. = σ against H₁: 6 > σ2. Suppose that the sample sizes are n₁ = 20 and 2 = 8, and that (a) Test the hypothesis. Round your answers to two decimal places (e.g. 98.76). The test statistic is fo = 1.96 The critical value is f = 6.18 Conclusion: fail to reject the null hypothesis at a = 0.01. (b) Construct the confidence interval on 02/2/622 which can be used to test the hypothesis: (Round your answer to two decimal places (e.g. 98.76).) 035

Chapter 8 Solutions

LaunchPad for Moore's Introduction to the Practice of Statistics (12 month access)

Ch. 8.1 - Prob. 11UYKCh. 8.1 - Prob. 12ECh. 8.1 - Prob. 13ECh. 8.1 - Prob. 14ECh. 8.1 - Prob. 15ECh. 8.1 - Prob. 16ECh. 8.1 - Prob. 17ECh. 8.1 - Prob. 18ECh. 8.1 - Prob. 19ECh. 8.1 - Prob. 20ECh. 8.1 - Prob. 21ECh. 8.1 - Prob. 22ECh. 8.1 - Prob. 23ECh. 8.1 - Prob. 24ECh. 8.1 - Prob. 25ECh. 8.1 - Prob. 26ECh. 8.1 - Prob. 27ECh. 8.1 - Prob. 28ECh. 8.1 - Prob. 29ECh. 8.1 - Prob. 30ECh. 8.1 - Prob. 31ECh. 8.1 - Prob. 32ECh. 8.1 - Prob. 33ECh. 8.1 - Prob. 34ECh. 8.1 - Prob. 35ECh. 8.1 - Prob. 37ECh. 8.1 - Prob. 39ECh. 8.1 - Prob. 40ECh. 8.1 - Prob. 41ECh. 8.1 - Prob. 42ECh. 8.1 - Prob. 43ECh. 8.1 - Prob. 44ECh. 8.1 - Prob. 36ECh. 8.1 - Prob. 38ECh. 8.2 - Prob. 45UYKCh. 8.2 - Prob. 46UYKCh. 8.2 - Prob. 47UYKCh. 8.2 - Prob. 48UYKCh. 8.2 - Prob. 49UYKCh. 8.2 - Prob. 50UYKCh. 8.2 - Prob. 51UYKCh. 8.2 - Prob. 52ECh. 8.2 - Prob. 53ECh. 8.2 - Prob. 54ECh. 8.2 - Prob. 55ECh. 8.2 - Prob. 56ECh. 8.2 - Prob. 57ECh. 8.2 - Prob. 58ECh. 8.2 - Prob. 59ECh. 8.2 - Prob. 60ECh. 8.2 - Prob. 61ECh. 8.2 - Prob. 62ECh. 8.2 - Prob. 63ECh. 8.2 - Prob. 64ECh. 8.2 - Prob. 65ECh. 8.2 - Prob. 66ECh. 8.2 - Prob. 67ECh. 8.2 - Prob. 69ECh. 8.2 - Prob. 68ECh. 8.2 - Prob. 70ECh. 8.2 - Prob. 71ECh. 8 - Prob. 72ECh. 8 - Prob. 73ECh. 8 - Prob. 74ECh. 8 - Prob. 75ECh. 8 - Prob. 76ECh. 8 - Prob. 77ECh. 8 - Prob. 94ECh. 8 - Prob. 79ECh. 8 - Prob. 80ECh. 8 - Prob. 81ECh. 8 - Prob. 82ECh. 8 - Prob. 83ECh. 8 - Prob. 84ECh. 8 - Prob. 85ECh. 8 - Prob. 86ECh. 8 - Prob. 87ECh. 8 - Prob. 88ECh. 8 - Prob. 89ECh. 8 - Prob. 90ECh. 8 - Prob. 95ECh. 8 - Prob. 96ECh. 8 - Prob. 97ECh. 8 - Prob. 98ECh. 8 - Prob. 99ECh. 8 - Prob. 92ECh. 8 - Prob. 93ECh. 8 - Prob. 78ECh. 8 - Prob. 100ECh. 8 - Prob. 101E
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Text book image
College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning
Text book image
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Text book image
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Text book image
College Algebra
Algebra
ISBN:9781938168383
Author:Jay Abramson
Publisher:OpenStax
Statistics 4.1 Point Estimators; Author: Dr. Jack L. Jackson II;https://www.youtube.com/watch?v=2MrI0J8XCEE;License: Standard YouTube License, CC-BY
Statistics 101: Point Estimators; Author: Brandon Foltz;https://www.youtube.com/watch?v=4v41z3HwLaM;License: Standard YouTube License, CC-BY
Central limit theorem; Author: 365 Data Science;https://www.youtube.com/watch?v=b5xQmk9veZ4;License: Standard YouTube License, CC-BY
Point Estimate Definition & Example; Author: Prof. Essa;https://www.youtube.com/watch?v=OTVwtvQmSn0;License: Standard Youtube License
Point Estimation; Author: Vamsidhar Ambatipudi;https://www.youtube.com/watch?v=flqhlM2bZWc;License: Standard Youtube License