
FUNDAMENTALS OF PHYSICS - EXTENDED
12th Edition
ISBN: 9781119773511
Author: Halliday
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 90P
A constant horizontal force moves a 50 kg trunk 6.0 m up a 30° incline at constant speed. The coefficient of kinetic friction is 0.20. What are (a) the work done by the applied force and (b) the increase in the thermal energy of the trunk and incline?
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Calculate the center of mass of the hollow cone
shown below. Clearly specify the origin and the
coordinate system you are using.
Z
r
Y
h
X
12. If all three collisions in the figure below are
totally inelastic, which will cause more damage?
(think about which collision has a larger amount of
kinetic energy dissipated/lost to the environment?
I
m
II
III
A. I
B. II
C. III
m
m
v
brick wall
ע
ע
0.5v
2v
0.5m
D. I and II
E. II and III
F. I and III
G. I, II and III (all of them)
2m
Can you solve this 2 question teach me step by step and draw for me
Chapter 8 Solutions
FUNDAMENTALS OF PHYSICS - EXTENDED
Ch. 8 - SSM What is the spring constant of a spring that...Ch. 8 - A 1.50 kg snowball is fired from a cliff 12.5 m...Ch. 8 - GO In Problem 2, what is the speed of the car at a...Ch. 8 - a In Problem 3, what is the speed of the book when...Ch. 8 - SSM WWW a In Problem 5, what is the speed of the...Ch. 8 - a In Problem 8, using energy techniques rather...Ch. 8 - SSM A 5.0 g marble is fired vertically upward...Ch. 8 - a In Problem 4, what initial speed must be given...Ch. 8 - A 700 g block is released from rest at height h0...Ch. 8 - In Problem 6, what are the magnitudes of a the...
Ch. 8 - a In Problem 7, what is the speed of the ball at...Ch. 8 - GO A pendulum consists of a 2.0 kg stone swinging...Ch. 8 - Figure 8-34 shows a pendulum of length L = 1.25 m....Ch. 8 - At t = 0 a 1.0 kg ball is thrown from a tall tower...Ch. 8 - A conservative force F=(6.0x12)i N, where x is in...Ch. 8 - Tarzan, who weighs 688 N, swings from a cliff at...Ch. 8 - A uniform cord of length 25 cm and mass 15 g is...Ch. 8 - GO Figure 8-50 shows a plot of potential energy U...Ch. 8 - The potential energy of a diatomic molecule a...Ch. 8 - A single conservative force Fx acts on a 1.0 kg...Ch. 8 - A worker pushed a 27 kg block 9.2 m along a level...Ch. 8 - A collie drags its bed box across a floor by...Ch. 8 - A horizontal force of magnitude 35.0 N pushes a...Ch. 8 - SSM A rope is used to pull a 3.57 kg block at...Ch. 8 - An outfielder throws a baseball with an initial...Ch. 8 - A 75 g Frisbee is thrown from a point 1.1 m above...Ch. 8 - SSM ILW A 25 kg bear slides, from rest, 12 m down...Ch. 8 - A 60 kg skier leaves the end of a ski-jump ramp...Ch. 8 - During a rockslide, a 520 kg rock slides from rest...Ch. 8 - A large fake cookie sliding on a horizontal...Ch. 8 - A child whose weight is 267 N slides down a 6.1 m...Ch. 8 - You push a 2.0 kg block against a horizontal...Ch. 8 - A cookie jar is moving up a 40 incline. At a point...Ch. 8 - A stone with a weight of 5.29 N is launched...Ch. 8 - Prob. 60PCh. 8 - When a click beetle is upside down on its back, it...Ch. 8 - A 3.2 kg sloth hangs 3.0 m above the ground. a...Ch. 8 - From the edge of a cliff, a 0.55 kg projectile is...Ch. 8 - SSM The temperature of a plastic cube is monitored...Ch. 8 - SSM To form a pendulum, a 0.092 kg ball is...Ch. 8 - We move a particle along an x axis, first outward...Ch. 8 - SSM A 1500 kg car begins sliding down a 5.0...Ch. 8 - SSM A 15 kg block is accelerated at 2.0 m/s2 along...Ch. 8 - A certain spring is found not to conform to Hookes...Ch. 8 - SSM Each second, 1200 m3 of water passes over a...Ch. 8 - A 1.50 kg water balloon is shot straight up with...Ch. 8 - A 2.50 kg beverage can is thrown directly downward...Ch. 8 - A constant horizontal force moves a 50 kg trunk...Ch. 8 - A volcanic ash flow is moving across horizontal...Ch. 8 - The luxury liner Queen Elizabeth 2 has a...Ch. 8 - A factory worker accidentally releases a 180 kg...Ch. 8 - If a 70 kg baseball player steals home by sliding...Ch. 8 - A 0.50 kg banana is thrown directly upward with an...Ch. 8 - A metal tool is sharpened by being held against...Ch. 8 - A swimmer moves through the water at an average...Ch. 8 - An automobile with passengers has weight 16 400 N...Ch. 8 - A 0.63 kg ball thrown directly upward with an...Ch. 8 - The summit of Mount Everest is 8850 m above sea...Ch. 8 - A sprinter who weighs 670 N runs the first 7.0 m...Ch. 8 - Prob. 104PCh. 8 - A machine pulls a 40 kg trunk 2.0 m up a 40 ramp...Ch. 8 - Prob. 106PCh. 8 - The only force acting on a particle is...Ch. 8 - In 1981, Daniel Goodwin climbed 443 m up the...Ch. 8 - A 60.0 kg circus performer slides 4.00 m down a...Ch. 8 - A 5.0 kg block is projected at 5.0 m/s up a plane...Ch. 8 - A 9.40 kg projectile is fired vertically upward....Ch. 8 - A 70.0 kg man jumping from a window lands in an...Ch. 8 - A 30 g bullet moving a horizontal velocity of 500...Ch. 8 - A 1500 kg car starts from rest on a horizontal...Ch. 8 - A 1.50 kg snowball is shot upward at an angle of...Ch. 8 - Prob. 116PCh. 8 - A 20 kg block on a horizontal surface is attached...Ch. 8 - Resistance to the motion of an automobile consists...Ch. 8 - SSM A 50 g ball is thrown from a window with an...Ch. 8 - A spring with a spring constant of 3200 N/m is...Ch. 8 - A locomotive with a power capability of 1.5 MW can...Ch. 8 - SSM A 0.42 kg shuffleboard disk is initially at...Ch. 8 - A river descends 15 m through rapids. The speed of...Ch. 8 - The magnitude of the gravitational force between a...Ch. 8 - Approximately 5.5 106 kg of water falls 50 m over...Ch. 8 - To make a pendulum, a 300 g ball is attached to...Ch. 8 - Prob. 127PCh. 8 - Prob. 128PCh. 8 - Prob. 129PCh. 8 - Prob. 130PCh. 8 - Prob. 131PCh. 8 - Prob. 132PCh. 8 - Prob. 133PCh. 8 - Prob. 134PCh. 8 - Prob. 135PCh. 8 - Prob. 136P
Additional Science Textbook Solutions
Find more solutions based on key concepts
Distinguish between nucleus and nucleoid.
Microbiology: Principles and Explorations
Which is more distal, the base or the head of the meta carpals? With which bones do the proximal phalanges arti...
Principles of Anatomy and Physiology
6. A particle starts from x0 = 10 m at t = 0 s and moves with the velocity graph shown in FIGURE EX2.6.
a. Do...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Write structural formulas and give acceptable names for all representatives of the following: (a) Tribromobenze...
Organic Chemistry
27. Consider the reaction.
Express the rate of the reaction in terms of the change in concentration of each of...
Chemistry: Structure and Properties (2nd Edition)
1. Which is a function of the skeletal system? (a) support, (b) hematopoietic site, (c) storage, (d) providing ...
Anatomy & Physiology (6th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- From this question and answer can you explain how get (0,0,5) and (5,0,,0) and can you teach me how to solve thisarrow_forwardCan you solve this 2 question and teach me using ( engineer method formula)arrow_forward11. If all three collisions in the figure below are totally inelastic, which brings the car of mass (m) on the left to a halt? I m II III m m ע ע ע brick wall 0.5v 2m 2v 0.5m A. I B. II C. III D. I and II E. II and III F. I and III G. I, II and III (all of them)arrow_forward
- How can you tell which vowel is being produced here ( “ee,” “ah,” or “oo”)? Also, how would you be able to tell for the other vowels?arrow_forwardYou want to fabricate a soft microfluidic chip like the one below. How would you go about fabricating this chip knowing that you are targeting a channel with a square cross-sectional profile of 200 μm by 200 μm. What materials and steps would you use and why? Disregard the process to form the inlet and outlet. Square Cross Sectionarrow_forward1. What are the key steps involved in the fabrication of a semiconductor device. 2. You are hired by a chip manufacturing company, and you are asked to prepare a silicon wafer with the pattern below. Describe the process you would use. High Aspect Ratio Trenches Undoped Si Wafer P-doped Si 3. You would like to deposit material within a high aspect ratio trench. What approach would you use and why? 4. A person is setting up a small clean room space to carry out an outreach activity to educate high school students about patterning using photolithography. They obtained a positive photoresist, a used spin coater, a high energy light lamp for exposure and ordered a plastic transparency mask with a pattern on it to reduce cost. Upon trying this set up multiple times they find that the full resist gets developed, and they are unable to transfer the pattern onto the resist. Help them troubleshoot and find out why pattern of transfer has not been successful. 5. You are given a composite…arrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for (z1-z∗2)/z1+z2∗. Find r and θ for (z1−z2∗)z1z2∗ Please show all stepsarrow_forwardAn electromagnetic wave is traveling through vacuum in the positive x direction. Its electric field vector is given by E=E0sin(kx−ωt)j^,where j^ is the unit vector in the y direction. If B0 is the amplitude of the magnetic field vector, find the complete expression for the magnetic field vector B→ of the wave. What is the Poynting vector S(x,t), that is, the power per unit area associated with the electromagnetic wave described in the problem introduction? Give your answer in terms of some or all of the variables E0, B0, k, x, ω, t, and μ0. Specify the direction of the Poynting vector using the unit vectors i^, j^, and k^ as appropriate. Please explain all stepsarrow_forwardAnother worker is performing a task with an RWL of only 9 kg and is lifting 18 kg, giving him an LI of 2.0 (high risk). Questions:What is the primary issue according to NIOSH?Name two factors of the RWL that could be improved to reduce risk.If the horizontal distance is reduced from 50 cm to 30 cm, how does the HM change and what effect would it have?arrow_forward
- Two complex values are z1=8 + 8i, z2=15 + 7 i. z1∗ and z2∗ are the complex conjugate values. Any complex value can be expessed in the form of a+bi=reiθ. Find r and θ for z1z2∗. Find r and θ for z1/z2∗? Find r and θ for (z1−z2)∗/z1+z2∗. Find r and θ for (z1−z2)∗/z1z2∗ Please explain all steps, Thank youarrow_forwardAn ac series circuit consists of a voltage source of frequency 60 Hz and voltage amplitude V, a 505-Ω resistor, and a capacitor of capacitance 7.2 μF. What must be the source voltage amplitude V for the average electrical power consumed in the resistor to be 236 W? There is no inductance in the circuit.arrow_forwardAn L−R−C series circuit has R= 280 Ω . At the frequency of the source, the inductor has reactance XLL= 905 Ω and the capacitor has reactance XC= 485 Ω . The amplitude of the voltage across the inductor is 445 V . What is the amplitude of the voltage across the resistor and the capacitor? What is the voltage amplitude of the source? What is the rate at which the source is delivering electrical energy to the circuit?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningGlencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill

University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Kinetic Energy and Potential Energy; Author: Professor Dave explains;https://www.youtube.com/watch?v=g7u6pIfUVy4;License: Standard YouTube License, CC-BY