
Concept explainers
(a)
The expression for
(a)

Answer to Problem 8.82CP
The expression for
Explanation of Solution
Given info: The length of the string is
The diagram is shown below.
Figure I
The formula to calculate the horizontal displacement is,
Here,
The formula to calculate the work done by the wind force is,
Here,
Substitute
The formula to calculate the gravitational potential energy of the ball is,
Here,
From the law of conservation of energy,
Here,
Substitute
Square the above expression on both sides to find
Substitute
Conclusion:
Therefore, the expression for
(b)
The value of
(b)

Answer to Problem 8.82CP
The value of
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for
Substitute
Conclusion:
Therefore, the value of
(c)
The value of
(c)

Answer to Problem 8.82CP
The value of
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for
Substitute
Conclusion:
Therefore, the value of
(d)
The value of
(d)

Answer to Problem 8.82CP
The value of
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for
In the above expression, the height of the ball is directly proportional to the square of the magnitude of force as the force increases then the height of the ball also increases but in the given case, the value of force is approach to zero then the height of the ball also approach to zero.
Conclusion:
Therefore, the value of
(e)
The value of
(e)

Answer to Problem 8.82CP
The value of
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for
Substitute
Conclusion:
Therefore, the value of
(f)
The equilibrium height of the ball as a function of
(f)

Answer to Problem 8.82CP
The equilibrium height of the ball as a function of
Explanation of Solution
Given info: The length of the string is
The given diagram is shown below.
Figure II
The diagram is shown below.
Figure III
From the figure the equilibrium height of the ball is,
Here,
From the figure II,
Substitute
Substitute
Conclusion:
Therefore, the equilibrium height of the ball as a function of
(g)
The value of equilibrium height of the ball
(g)

Answer to Problem 8.82CP
The value of equilibrium height of the ball
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for equivalent height of the ball in terms of
Substitute
Conclusion:
Therefore, the value of equilibrium height of the ball
(h)
The value of equilibrium height of the ball
(h)

Answer to Problem 8.82CP
The value of equilibrium height of the ball
Explanation of Solution
Given info: The length of the string is
From part (a), the expression for equivalent height of the ball in terms of
Substitute
Conclusion:
Therefore, the value of equilibrium height of the ball
Want to see more full solutions like this?
Chapter 8 Solutions
Physics for Scientists and Engineers, Technology Update, Hybrid Edition (with Enhanced WebAssign Multi-Term LOE Printed Access Card for Physics)
- A 70.0 cm, uniform, 40.0 N shelf is supported horizontally by two vertical wires attached to the sloping ceiling (Figure 1). A very small 20.0 N tool is placed on the shelf midway between the points where the wires are attached to it. Find the tension in the left-hand wire. Express your answer with the appropriate units.arrow_forwardFind the total bind Mev. binding energy for 13 Carbon, 6C (atomic mass = 13.0033554)arrow_forwardWhat is the 27 energy absorbed in this endothermic Auclear reaction 2] Al + 'n → 27 Mg + ! H? (The atom mass of "Al is 26.981539u. and that of 11 Mg is 26.984341u) MeVarrow_forward
- What is the energy released in this nuclear reaction 1 F + "', H-1 O+ He? 19 19 16 (The atomic mass of 1F is 18.998403 u, and that of 20 is 15.9949154) MeV.arrow_forwardWhat is the energy released in this B+ nuclear reaction خالد 2½ Al w/ Mg + ie? (The atomic mass of 11 Al is 23.9999394 and that > of 12 Mg is 23.985041 u) MeV.arrow_forwardWhat is the energy released / absorbed in this nuclear reaction 14 N+ & He → » O + ! N? (The atomic mass of 14 N is 14.003074u. 17N+ and that of 10 is 16.9991324). MeVarrow_forward
- Can someone help me answer this question thanks.arrow_forwardCan someone help me with this question thanks.arrow_forward4B. Four electrons are located on the corners of a square, one on each corner, with the sides of the square being 25 cm long. a) Draw a sketch of the scenario and use your sketch to b) Determine the total force (magnitude and direction) on one of the electrons from the other three?arrow_forward
- Portfolio Problem 3. A ball is thrown vertically upwards with a speed vo from the floor of a room of height h. It hits the ceiling and then returns to the floor, from which it rebounds, managing just to hit the ceiling a second time. Assume that the coefficient of restitution between the ball and the floor, e, is equal to that between the ball and the ceiling. Compute e.arrow_forwardPortfolio Problem 4. Consider two identical springs, each with natural length and spring constant k, attached to a horizontal frame at distance 2l apart. Their free ends are attached to the same particle of mass m, which is hanging under gravity. Let z denote the vertical displacement of the particle from the hori- zontal frame, so that z < 0 when the particle is below the frame, as shown in the figure. The particle has zero horizontal velocity, so that the motion is one dimensional along z. 000000 0 eeeeee (a) Show that the total force acting on the particle is X F-mg k-2kz 1 (1. l k. (b) Find the potential energy U(x, y, z) of the system such that U x = : 0. = O when (c) The particle is pulled down until the springs are each of length 3l, and then released. Find the velocity of the particle when it crosses z = 0.arrow_forwardIn the figure below, a semicircular conductor of radius R = 0.260 m is rotated about the axis AC at a constant rate of 130 rev/min. A uniform magnetic field of magnitude 1.22 T fills the entire region below the axis and is directed out of the page. R Pout (a) Calculate the maximum value of the emf induced between the ends of the conductor. 1.77 v (b) What is the value of the average induced emf for each complete rotation? 0 v (c) How would your answers to parts (a) and (b) change if the magnetic field were allowed to extend a distance R above the axis of rotation? (Select all that apply.) The value in part (a) would increase. The value in part (a) would remain the same. The value in part (a) would decrease. The value in part (b) would increase. The value in part (b) would remain the same. The value in part (b) would decrease. × (d) Sketch the emf versus time when the field is as drawn in the figure. Choose File No file chosen This answer has not been graded yet. (e) Sketch the emf…arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning





