EBK INTRODUCTION TO HEALTH PHYSICS, FIF
EBK INTRODUCTION TO HEALTH PHYSICS, FIF
5th Edition
ISBN: 9780071835268
Author: Johnson
Publisher: VST
bartleby

Concept explainers

Question
Book Icon
Chapter 8, Problem 8.6P
To determine

The inhalation DAC for Co-60 using ICRP 60(S) criteria

Expert Solution & Answer
Check Mark

Answer to Problem 8.6P

The inhalation DAC is 2.87×102Bqm3

Explanation of Solution

Given info:

The particle size is 1μm

The annual dose limit is 0.02Sv

Formula used:

  ALI(inhalation)=AnnualdoselimitCommittedeffectivedosecoefficientDAC=ALI Bq yrrefferencewokerinhales

The committed effective dose coefficient of Co-60 using ICRP 60(S) for 1μm size particle is 2.9×108SvBq

Calculation:

  ALI(inhalation)=0.02 Sv yr2.9× 10 8 Sv Bq=6.8966×105BqyrDAC=6.8966× 105 Bq yr2400 m 3 yr=2.87×102Bqm3

Conclusion:

The inhalation DAC = 2.87×102Bqm3

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
In each of the following, solve the problem stated. Express your answers in three significant figures. No unit is considered incorrect. 1. For the circuit shown, determine all the currents in each branch using Kirchhoff's Laws. (3 points) 6 5V 2 B C 4 A www 6 VT ww T10 V F E 2. Compute for the total power dissipation of the circuit in previous item. (1 point) 3. Use Maxwell's Mesh to find Ix and VAB for the circuit shown. (3 points) Ix 50 V 20 ww 21x B 4. Calculate all the currents in each branch using Maxwell's Mesh for the circuit shown. (3 points) www 5ი 10 24V 2A 2002 36V
If the mass of substance (1 kg), initial temperature (125˚C), the final temperature (175˚C) and the total volume of a closed container (1 m3) remains constant in two experiments, but one experiment is done with water ( ) and the other is done with nitrogen ( ). What is the difference in the change in pressure between water and nitrogen?
Using the simplified energy balance in Equation 1, suppose there is heat transfer of 40.00 J to a system, while the system does 10.00 J of work. Later, there is heat transfer of 25.00 J out of the system while 4.00 J of work is done on the system. What is the net change in internal energy of the system?

Chapter 8 Solutions

EBK INTRODUCTION TO HEALTH PHYSICS, FIF

Knowledge Booster
Background pattern image
Physics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Text book image
Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Text book image
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Text book image
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Text book image
University Physics Volume 3
Physics
ISBN:9781938168185
Author:William Moebs, Jeff Sanny
Publisher:OpenStax
Text book image
University Physics Volume 1
Physics
ISBN:9781938168277
Author:William Moebs, Samuel J. Ling, Jeff Sanny
Publisher:OpenStax - Rice University