FUND OF ENG THERMODYN(LLF)+WILEYPLUS
9th Edition
ISBN: 9781119391777
Author: MORAN
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Question
error_outline
This textbook solution is under construction.
Students have asked these similar questions
I only need help with part d.
The figure below provides steady-state operating data for a cogeneration cycle that generates electricity and provides heat for campus buildings. Steam at 1.5 MPa, 280°C, enters a two-stage turbine with a mass flow rate of m1 = 2 kg/s. A fraction of the total flow, y = 0.15, is extracted between the two stages at 0.2 MPa to provide for building heating, and the remainder expands through the second stage to the condenser pressure of 0.1 bar. Condensate returns from the campus buildings at 0.1 MPa, 60°C and passes through a trap into the condenser, where it is reunited with the main feedwater flow. Saturated liquid leaves the condenser at 0.1 bar.
On my online homework, it says the answer for part b, 993.2 kW and part c, 360.06 are incorrect. I also need help with part d.
The figure below provides steady-state operating data for a cogeneration cycle that generates electricity and provides heat for campus buildings. Steam at 1.5 MPa, 280°C, enters a two-stage turbine with a mass flow rate of m1 = 2 kg/s. A fraction of the total flow, y = 0.15, is extracted between the two stages at 0.2 MPa to provide for building heating, and the remainder expands through the second stage to the condenser pressure of 0.1 bar. Condensate returns from the campus buildings at 0.1 MPa, 60°C and passes through a trap into the condenser, where it is reunited with the main feedwater flow. Saturated liquid leaves the condenser at 0.1 bar.
1. A medium size power station is used to produce 30 MW net power for a refinery. The station uses
steam as the operating fluid and operates according to the Carnot cycle between the pressure
limits of 0.4 bar and 35 bar. Steam enters the boiler as a saturated liquid and leaves it as a dry
saturated vapour.
(i)
List the name of the four processes in a generic Carnot cycle and state what type of energy transfer
(work/heat) can be neglected in each process.
(ii)
Sketch a T-s diagram for the above cycle indicating the location of the four components required.
(iii)
Determine the dryness fraction of the steam that is fed to the condenser.
Knowledge Booster
Similar questions
- 1. An industrial company operates a steam power plant with reheat and regeneration. The steam enters a turbine at 115 bar and 550 °C and expands to the condenser at 0.10 bar. Steam leaves the first stage at 30 bar and then reheat at 470 °C before entering the second stage turbine. At the second stage turbine a mass is extracted to the open feed water heater at 6 bar. Both section of the turbine (first stage and second stage) has adiabatic efficiency of 93 %. A condensate pump exists between the main condenser and the heater. Another pump lies between the heater and condensate outlet line from the heater (condensed extracted steam) a. Compute the enthalpies at each point b. Compute for the mass extracted from the second stage turbine to the open feed water heater c. Efficiency of the cycle.arrow_forward6.7 A gas engine-based trigeneration plant delivers heat and power at the fol- lowing rates: • 90 kJ/s of heat for water heating and 110 kW of electricity over 12 h (5) a day 110 kW of electricity and 100 kJ/s of heat for absorption cooling over 12 h (t,) a day Plant overall efficiency in heating and power generation mode is EUF, = 87%, which in cooling and power generation mode is EUF, = 75%. The fuel in the gas engine is natural gas with an LHV of 49 MJ/kg. Calculate (i) the total useful energy production by the trigeneration plant in a day, (ii) the trigeneration plant average EUF value, and (iii) the monthly fuel energy and fuel requirements of the trigeneration plant.arrow_forwardA binary vapor power cycle consists of two ideal Rankine cycles with steam and Refrigerant 134a as the working fluids. The mass flow rate of steam is 2 kg/s. In the steam cycle, superheated vapor enters the turbine at 8 MPa, 600C, and saturated liquid exits the condenser at 250 kPa. In the interconnecting heat exchanger, energy rejected by heat transfer from the steam cycle is provided to the Refrigerant 134a cycle. The heat exchanger experiences no stray heat transfer with its surroundings. Superheated Refrigerant 134a leaves the heat exchanger at 600 kPa, 30C, which enters the Refrigerant 134a turbine. Saturated liquid leaves the Refrigerant 134a condenser at 100 kPa. Determine (a) The net power developed by the binary cycle, in kW. (b) The rate of heat addition to the binary cycle, in kW. (c) The thermal efficiency of the binary cycle.arrow_forward
- 2. A steam turbine installation takes steam at 70 bar, with 100°C of superheat, and expands to an exhaust pressure of 0.06 bar. If the efficiency ratio on the Rankine cycle is 0.75, determine the thermal efficiency of the installation and the specific steam consumption rate in kg/kWh. (0.29, 4.19)arrow_forward1. A steam power plant operates on Rankine cycle. The steam enters the turbine at 7MpA and 550 degrees celsius with a velocity of 30m/s. It discharges to the condenser at 20kpa with a velocity of 90m/s. For a flow of 37.8 kg/s. Determine: a. The schematic and T-S diagram of the cycle. b. The enthalpies on each state. c. Total Heat added d. Heat rejected in the condenser e. Net work f. Cycle EfficiencyP.S. Please help me with this question. Im having a hard time with this. Thank you very much and please show your solution.arrow_forward= 10000 kg/h. Also, the plant has Q2. There are many electrical power plants in Iraq. The rate of steam flow : the following data refer to a simple steam power plant : Calculate : (i) Power output of the turbine. (ii) Heat transfer per hour in the boiler and condenser separately. 65 bar 70 bar 400°C Boiler 1 60 bar, 380°C 4 Wout Pump Turbine G Electricity 2 0.1 bar, 0.9 dry 3 Condenser 0.09 bar Saturated liquidarrow_forward
- A heat pump cycle using water as the working fluid consists of a compressor, a condenser, an expansion valve, and an evaporator. Saturated vapor with mass flow rate of 1 kg/s at 0.5 MPa (state 1) enters the condenser and leaves it as saturated liquid at the same pressure (state 2). The pressure in the evaporator is 0.01 MPa. The condenser and the evaporator processes are isobaric. The compressor is adiabatic and reversible. The valve is adiabatic. A. List all the known information and assumptions. B. Determine the heat output of the condenser (QH) C. Determine the heat input of the evaporator(Qc) D. Determine the coefficient of performance of the heat pump. E. Determine the coefficient of performance of a Carnot heat pump running between the same temperatures TH and TC at the evaporator and condenser. F. Calculate the entropy generation in the compressor. G. Draw the TS diagram for the cycle on paper. (Hint: you must calculate T1, T2, T3, T4, h1, h2, h3, h4, s1, s2, s3, s4, and draw…arrow_forwardgenerating stationsarrow_forwardFigure P8.13 provides steady-state operating data for a solar power plant that operates on a Rankine cycle with Refrigerant 134a as its working fluid. The turbine and pump operate adiabatically. The rate of energy input to the collectors from solar radiation is 0.3 kW per m^2 of collector surface area, with 60% of the solar input to the collectors absorbed by the refrigerant as it passes through the collectors. Determine the solar collector surface area, in m^2 per kW of power developed by the plant. Discuss possible operational improvements that could reduce the required collector surface area.arrow_forward
- Need help with this engineering problem. Steam enters the turbine of a simple vapor power plant with a pressure of 12 MPa and a temperature of 500°C and expands adiabatically to condenser pressure, p. Saturated liquid exits the condenser at pressure p. The isentropic efficiency of both the turbine and the pump is 84%.For p = 100 kPa, determine: (a) the turbine exit quality, in percent.(b) the cycle thermal efficiency, in percent.arrow_forwardA binary vapor power cycle consists of two ideal Rankine cycles with steam and Refrigerant 134a as the working fluids. The mass flow rate of steam is 2 kg/s. In the steam cycle, superheated vapor enters the turbine at 8 MPa, 560°C, and saturated liquid exits the condenser at 50 kPa. In the interconnecting heat exchanger, energy rejected by heat transfer from the steam cycle is provided to the Refrigerant 134a cycle. The heat exchanger experiences no stray heat transfer with its surroundings. Superheated Refrigerant 134a leaves the heat exchanger at 600 kPa, 30°C, which enters the Refrigerant 134a turbine. Saturated liquid leaves the Refrigerant 134a condenser at 100 kPa.Determine:(a) the net power developed by the binary cycle, in kW.(b) the rate of heat addition to the binary cycle, in kW.(c) the percent thermal efficiency of the binary cycle.(d) the rate of entropy production in the interconnecting heat exchanger, in kW/K.arrow_forwardRankine Cycle (Thermodynamics) Show the illustration diagram and complete and step by step solution.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY