Concept explainers
Find the hydraulic uplift force at the base of the hydraulic structure per meter length.
Answer to Problem 8.5P
The hydraulic uplift force at the base of the hydraulic structure per meter length is
Explanation of Solution
Given information:
The hydraulic conductivity of the permeable soil layer k is
The head difference between the upstream and downstream H is 10 m.
The height of the water level
The depth of permeable layer up to the tip of the hydraulic structure D is 1.67 m.
The depth of permeable layer
Calculation:
Draw the free body diagram of the flow net for the given values as in Figure 1.
Determine the head loss for each drop using the relation.
Here,
Refer Figure 1.
The number of potential drop
Substitute 10 m for H and 12 for
Determine the pressure head at D using the relation.
Here, flow dis is the flow net distance.
Substitute 10 m for H, 3.34 m for
Determine the pressure head at E using the relation.
Substitute 10 m for H, 3.34 m for
Determine the pressure head at F using the relation.
Substitute 10 m for H, 1.67 m for D, 3.5 m for flow dis, and 0.833 for
Determine the pressure head at G using the relation.
Substitute 10 m for H, 1.67 m for D, 8.5 m for flow dis, and 0.833 for
Determine the pressure head at H using the relation.
Substitute 10 m for H, 3.34 m for
Determine the pressure head at I using the relation.
Substitute 10 m for H, 3.34 m for
Determine the hydraulic uplift force at the base of the hydraulic structure per meter length using the relation.
Here,
Take unit weight of water
Substitute
Draw the pressure head diagram as in Figure 2.
Therefore, the hydraulic uplift force at the base of the hydraulic structure per meter length is
Want to see more full solutions like this?
Chapter 8 Solutions
MindTap Engineering for Das/Sobhan's Principles of Geotechnical Engineering, SI Edition, 9th Edition, [Instant Access], 2 terms (12 months)
- A vertical pole supports a horizontal cable CD and is supported by a ball-and-socket joint at A as shown in the figure below. Cable CD is parallel to the x-z plane (which implies that a vector from C to D has no y-component) and is oriented at an angle : = 20° from the x-y plane. The distances are given as h = 10 m, b = 6 m, a = 9 m, and d = 4 m. D C a B x Determine the following forces for this system if there is a 15 kN tension carried in cable CD. Report all answers in units of kN with 1 decimal place of precision. For the components of the reaction at A, be sure to use a positive or negative sign to indicate the direction of the force (negative signs if the force acts in the negative axial direction). The magnitude of the tension force in cable BE, TBE = 4.1 KN The magnitude of the tension force in cable BF, TBF = 41.1 KN The x-component of the reaction at joint A, Ax = 309.C KN ®®®® F The y-component of the reaction at joint A, Ay = -216. KN The z-component of the reaction at…arrow_forwardA small barrel weighing 400 N is lifted by a pair of tongs as shown. Knowing that h = 200 mm, L₁ = 400 mm, L2 = 120 mm and L3 = 200 mm, determine the magnitude of the forces exerted on member ABD of this machine structure. C L2 A P L1 L3 B D Report your answers in units of N with 2 decimal places of precision. N. The magnitude of the force acting at joint B = The magnitude of the force acting at joint D = N.arrow_forwardA frame is loaded by a force Q = 280 N and supported by pins at points B and C as shown below. The distances are given as a = 0.4 m, b = 0.8 m, c = 0.6 m, d = 2.6 m, and e = 1.5 m. b C C d 11041 A B Q C D e Determine the reactions at joints B and C. Report all answers in units of N with 2 decimal places of precision. Positive signs indicate that a force component acts in the positive axis direction (i.e. up or right), while a negative sign should be used to indicate a force component acting in a negative axis direction (i.e. down or left). The x-component of the reaction force at joint B, Bx = N The y-component of the reaction force at joint B, By = N The x-component of the reaction force at joint C, Cx = N The y-component of the reaction force at joint C, Cy == Narrow_forward
- 7. A rectangular, unfinished concrete channel of 38-ft width is laid on a slope of 8 ft/mi. Determine the flow depth and Froude number of the flow if the flowrate is 400 ft³/s.arrow_forward***Please MAKE SURE to include all parts that I have shown in the 8 steps here and follow them but also show work for the entire problem. Those are all correct I just need the entire worked out problem with all of the work.arrow_forward***When answering the question MAKE SURE to use ALL of these steps and include them in the answer and don't answer the question in a different manner that is different than what is provided here as what is provided is correct (please include the work as well thanks I will like the answer): 1.correct equation: (ΔP / (ρg)) + ΔZ = f * (L / D) * (v^2 / 2g) + (v^2 / 2g) * ΣK_L 2.v = Q / A = 9.17 ft/s 3. Reynolds number: Re = (v * L) / ν = (v * L) / (ρ * μ) = 63,154 4.The pipe is smooth so: ε_d = 0 5.Friction factor from the Moody diagram: f = 0.020 6.Pressure difference: ΔP = P₁ - P₂ = P₁ - 8640 lb_f 7.Head loss due to elevation difference: ΔZ = Z₁ - Z₂ = -10 ft 8.Summation of pipe fittings and losses: ΣK_L = 0.2 + 7 + 2(1.5) + 0.05 = 10.25 9.values to plug in Length of the pipe: L = 20 ft Diameter of the pipe: D = 1/12 ft Fluid density: ρ = 1.94 slugs/ft³ Gravitational acceleration: g = 32.2 ft/s²arrow_forward
- 5. A uniform flow of 110,000 ft³/s is measured in a natural channel that is approximately rectangular in shape with a 2650-ft width and 17.5 ft depth. The water-surface elevation drops 0.37 ft per mile. Based on the computed Manning coefficient, n, characterize the type of natural channel observed. Also compute the Froude number and determine whether the flow is subcritical or supercritical.arrow_forwardFor the gymnasium floor plan shown, determine the dead loads and live loads acting on beam BF and girder AD.arrow_forwardThe building elevation section and the floor plans shown below. Assume a live load of 60 psf on all three floors. Calculate the axial forces by the live load in column C2 in the third and first stories. Consider live load reduction if permitted by ASCE.arrow_forward
- Fundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning