Fundamentals of Aerodynamics
6th Edition
ISBN: 9781259129919
Author: John D. Anderson Jr.
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 8, Problem 8.4P
At a given point in a flow,
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Air flows along a horizontal, curved streamline with a 5.486 m radius with a speed of 31.09 m/s. Determine the magnitude of pressure gradient normal to the streamline. Take rho = 1.2266 kg/m3
FLUID FLOW
Example 5: A liquid food with a density of 800 kg/m³ is being transported at a rate
of 5 ton/h through the system shown below. If the pressure at point 1 is 20 kPa
gage, determine the pressure at point 2. Neglect friction losses.
Example 5
P₁ = 20 kPa
D₁ = 0.08 m
6 m
2
FLUID FLOW
P₂ = ?
D₂ = 0.025 m
An incompressible fluid flows between two infinite stationary parallel plates. The velocity profile
is given by u =umax (Ay² + By + C), where A, B, and C are constants and y is measured upward
from the lower plate. The total gap width is h. Use appropriate boundary conditions to express the
constants in terms of h. Develop an expression for volume flow rate per unit depth and evaluate the
ratio V/umax.
Chapter 8 Solutions
Fundamentals of Aerodynamics
Ch. 8 - Consider air at a temperature of 230 K. Calculate...Ch. 8 - The temperature in the reservoir of a supersonic...Ch. 8 - At a given point in a flow, T=300K,p=1.2atm, and...Ch. 8 - At a given point in a flow, T=700R,p=1.6atm, and...Ch. 8 - Consider the isentropic flow through a supersonic...Ch. 8 - Consider the isentropic flow over an airfoil. The...Ch. 8 - The flow just upstream of a normal shock wave is...Ch. 8 - The pressure upstream of a normal shock wave is 1...Ch. 8 - The entropy increase across a normal shock wave is...Ch. 8 - The how just upstream of a normal shock wave is...
Ch. 8 - Consider a flow with a pressure and temperature of...Ch. 8 - Consider a flow with a pressure and temperature of...Ch. 8 - Repeat Problems 8.11 and 8.12 using (incorrectly)...Ch. 8 - Derive the Rayleigh Pitot tube formula, Equation...Ch. 8 - On March 16, 1990, an Air Force SR-71 set a new...Ch. 8 - In the test section of a supersonic wind tunnel, a...Ch. 8 - When the Apollo command module returned to earth...Ch. 8 - The stagnation temperature on the Apollo vehicle...Ch. 8 - Prove that the total pressure is constant...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6arrow_forwardAt a given point in a flow, T = 700 ◦R, p = 1.6 atm, and V = 2983 ft/s.At this point, calculate the corresponding values of p0, T0, p∗, T ∗, and M∗.arrow_forwardA constant-thickness film of viscous liquid (SG = 0.8, μ = 0.5 Pa-s) flows down an inclined plate an angle of 10⁰ as shown in the figure The velocity profile is given by the equation, u(y) = Cy(2h — y). If the value of his 5 cm, what is the value of the maximum velocity in m/s? NOTE: The pressure does not vary along the flow direction. u(y) Answer:arrow_forward
- Find the resultant force in the y-direction Fr,y for a volumetric flow rate in the y direction of 100 L/hr, a pressure of 150 kPa, and a diameter of 3 cm. Use the equation Fr, y = -m1y1 - P1A1arrow_forwardA fire hose has an inside diameter of 6.5 cm. Suppose such a hose carries a water flow of 40.5 L/s starting at a gauge pressure of 1.68 × 106 N/m2 . The hose discharges through a nozzle having an inside diameter of 3.4 cm. Take the viscosity of water to be 1.005 × 10-3 (N/m2)⋅s dh = 6.5 cmdn = 3.4 cmP = 1.68 × 106 N/m2Q = 40.5 L/s a. the Reynolds number, NR, for flow in the fire hose to show that the flow must be turbulent, with NR≥ 3000. b. Calculate the Reynolds number, NR, for flow in the fire hose and nozzle to show that the flow must be turbulent, with NR≥ 3000.arrow_forwardthe velocity principle of a given fluid flowing over a flat plate is given by = 2y – y 2 , where u in inches and y in inches .find shear stress at y = 0 and 1 ,respectively , if the fluid viscosity is 0.006 lbf s/ft 2 .arrow_forward
- Q2. The laminar flow of a Newtonian fluid between parallel plates is illustrated in the below figure. The velocity distribution for this flow is : h2 aP V = 8µ ax h The total gap between the plates is 3 cm. The viscosity of the fluid is 0.5 N s/m and the pressure gradient is -1200 N/m?/m. Find the magnitude and direction of the shear stress on the upper plate.arrow_forwardDetermine the exit velocity V2 for the given data V1 = 20 m/s, Q3 = 0.01 m3/s, and dh/dt = 0.arrow_forwardA steady flow of room temperaturearrow_forward
- Q: Consider fully developed laminar flow in the annular space formed by the two concentric cylinders shown in the below diagram. The outer pipe is stationary, and the inner pipe moves in the x direction with speed V For pressure gradient, , and the inner cylinder stationary, let ro = R and r = kR, The velocity profile is ax given by: др + 4μ. θα Find: 1- Volume flow rate (Q). 2- An expression for the average velocity (V) 3- Fork → 0, find Q and V 6arrow_forwardAt one point in a pipeline the water's speed is 3.00m/s and the gauge pressure is 5.00•10^4 Pa. Find the gauge pressure at a second point in the line, 11.0m lower than the first, if the pipe diameter at the second point is twice that at the first. note: density of water is 1000 kg/m^3.arrow_forwardsolve 20-30 mins i'll give you multiple upvote( handwritten asap)How can I solve the problem below in viscous fluid flow?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Introduction to Kinematics; Author: LearnChemE;https://www.youtube.com/watch?v=bV0XPz-mg2s;License: Standard youtube license